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Preface

This study involves the development of a method for solving stress
problems in a continuum. A lattice representation of the continuum, more
commonly called a lattice analogy, is used in the solution. The impetus
for this study was the inability to solve rationally many stress problems
occuring in soil and rock mechanics. Several classical problems in these
two fields can be classified as two-dimensional stress problems, for ex-
ample: long strip footing, retaining wall, culvert, and a well bore under
fluid pressure with or without fluid leak off. These are only a few of the
typical problems which can be considered to be two-dimensional. The
method of solution developed herein is for two-dimensional problems.

The extension of the lattice analogy technique to the general three-dimensional
stress case is discussed and recommendations made for this extension.

Generally speaking, solutions to stress problems in the field of soil
and rock mechanics should consider the nonlinear behavior of the continuum,
especially when the solutions are concerned with both stress distributions
and distortions at higher stress levels. The capability of considering non-
linearity, and also nonhomogeneity, of the continuum is incorporated in the
method of solution. Infinitesimal strains are considered in the method of
solution. For some problems in soils this consideration will make the
method of solution presented herein inapplicable.

For the past several years soil-structure interaction problems have
been studied at The University of Texas. These problems include laterally

and axially loaded piles, flexible footings, and flexible retaining walls.
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Methods for solving these problems have been developed whereby solutions
may be obtained quite easily through the use of electronic digital compu-
ters. However, the accuracy of these solutions is dependent of the accuracy
of the load-deformation characteristic used to define the soil. The term,
load-deformation characteristic, means the resistant behavior offered by
a soil as a structural element is deflected through it. Load-deformation
characteristic is not synomymic with stress-strain characteristic. Much
research is needed to develop procedures for predicting load-deformation
characteristic of a soil from its stress-strain characteristic. Both experi-
mental and analytical investigations will be involved. The possibility of
using the lattice analogy technique as a tool for predicting the load-deformation
characteristic of a soil from its stress-strain characteristic was primarily
the reason for this study. Although load-deformation prediction was not ad-
dressed to directly in this study, this study will provide an analytical tool
for future research activities in prediction of load-deformation character-

istics.
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ABSTRACT

The lattice analogy technique for solving plane stress problems pre-
sented by Hrennikoff in 1941 is extended to solve plane strain problems. So-
lutions to two-dimensional stress problems in linear homogeneous mediums
are made feasible by the use of matrix algebra and an electronic digital
computer.

Solutions of a plane stress problemm and a plane strain problem are
presented.

Extension of the method of solution to nonhomogeneous linear mediums
for the two-dimensional stress case is made.

Extension of the method of solution to the general three-dimensional
stress case is discussed. The required developments for this extension are
enumerated and recommendations made.

A method for solving two-dimensional stress problems in nonlinear
mediums is presented. The method uses the lattice analogy technique. Es-
sentially, the procedure is to represent small blocks of the nonlinear medium
by pseudo blocks of linear material. When subjected to the same state of
strain, the two blocks will possess the same state of stress. The key to the
solution is to find the particular set of pseudo linear blocks which will
properly represent the behavior of the actual nonlinear medium under a
given set of boundary conditions.

Solutions to two nonlinear stress problems are presented.

At the conclusion of this study, the method for solution of nonlinear
stress problems is considered to be in an embryonic stage of development.

Items for future study are enumerated and recommendations made.
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CHAPTER ONE

INTRODUCTION

Opening Remarks

This study involves the development of a method for solving stress
problems in a continuum. A lattice representation of the continuum, more
commonly called a lattice analogy, is used in the solution. The impetus
for this study was the inability to solve rationally many stress problems
occurring in soil and rock mechanics. Several classical problems in
these two fields can be classified as two-dimensional stress problems,
for example: long strip footing, retaining wall, culvert, and a well bore
under fluid pressure with or without fluid leak off. These are only a few
of the typical problems which can be considered to be two-dimensional.
The method of solution developed herein is for two-dimensional problems.
The extension of the lattice analogy technique to the general three-
dimensional stress case is discussed and recommendations are made for
this extension.

Generally speaking, solutions to stress problems in the field of soil
and rock mechanics should consider the nonlinear behavior of the continuum,
especially when the solutions are concerned with both stress distributions
and distortions at higher stress levels. The capability of considering non-
linearity, and also nonhomogeneity, of the continuum is incorporated in
the method of solution.

Because mathematical difficulties make solutions of the differential

equations which govern stress problems impossible in many cases, the



engineer is impelled to seek a method of approach other than one

of pure mathematical analysis. This was recognized by A. Hrennikoff in
1941. (7) Hrennikoff proposed the lattice analogy technique to solve stress
problems in linear elastic mediums. The technique proved applicable, with
some qualifications, to a variety of problems including two-dimensional
stress, bending of plates, bending of cylindrical shells, and the general
case of three-dimensional stress. However, as in other methods of solu-
tion based on approximating a continuous mathematical function by discrete
lumped values, the solution of the resulting system of linear simultaneous
equations by hand computation, namely relaxation schemes, presented a
formidable task. Because of the inability to solve these large systems of
equations, the application of the lattice analogy technique was impractical
for many stress problems.

With the advent of the electronic digital computer, a considerably bet-
ter means of computation became available. While this computational tool
greatly increased the feasibility of numerical analysis procedures, there
still exist many problems which completely tax the capability of computers.
Improvements in methods for solving large systems of equations as well
as improvements in computational hardware are currently being made.
Since the ability to solve large systems of simultaneous equations will im-
prove and since solutions of many problems are feasible using currently
available means, the lattice analogy method of solution was deemed to be
a practical approach to stress problems. The lattice analogy technique
was broadened to consider the nonlinear behavior of a material. Several
example problems are solved.

While the discussions and developments are in the context of soil and



rock mechanics, the method of solution is equally applicable to problems
in other fields.

As will be noted later in the development of the lattice analogy of a con-
tinuum, the structural configuration of an articulated framework used to
represent a continuum is not arbitrary, although it is not unique. A wide
range of articulated frameworks could be developed to approximate the de-
formability of a continuum. These frameworks would be composed of
several simple structural elements; namely, beams, columns, beam-
columns, plates and blocks. Lattice analogy is the descriptive term ap-
plied to any articulated framework consisting of beam, column, and beam-
column structural elements. Finite plate analogy or block analogy are the
descriptive terms for frameworks composed of plate or block elements.

Several analogies, both lattice and plate or block, have been proposed
in the literature. The analogy proposed by Hrennikoff is the classic lattice
analogy. (7) The analogy by Clough is an example of a finite plate analogy. (1)
To date, no comprehensive evaluation of the relative merits of the several
existing analogies has been reported. This is understandable since effi-
cient means for computations have only recently become available. It is
recommended that an evaluation be made in the near future.

A lattice analogy approach was used in this study. However, the method
for solving nonlinear stress problems developed herein is not basically de-
pendent on a particular analogy. If the evaluation study recommended above
indicates another analogy has significant advantages over the particular
analogy used herein, the employment of this analogy in the method of solu-

tion could be accomplished with little difficulty.



Objectives of this Study

The basic objective of this study is to develop a general method for
solving two -dimensional stress problems in linear and nonlinear mediums.
The lattice analogy technique is chosen as the basic analytical tool since
random and nonhomogeneous boundary conditions and material descriptions
can be handled. The steps involved inthe development of this method of
solution are listed below.

1. Development of the basic lattice analogy. This step involves de-
veloping the basic lattice configuration to be used and then deriving the
system of equations which described the lattice representation of the me-
dium. Developing the procedures for representing both linear and non-
linear mediums is required in this step.

2. Development of a means of solution based on.this lattice analogy.
This step basically involves writing a computer program which is as gen-
eral as possible in application. The writing of this program involves
(i) developing a gener.al input capability in regard to boundary conditions,
(ii) developing the means of generating the system of equations which de-
scribes the lattice representation of the problem, (iii) developing an effi-
cient means for solving this system of equations, and (iv) developing the
procedure for computing states of stress and strain throughout the medium
based on the distortion of the loaded lattice.

3. Evaluation of the potential of the method of solution. This step in-
volves solving a wide variety of stress problems to ascertain the general
capability of the method of solution.

4. Recommendation for future work. This step involves making




concrete recommendations, based on the initial study, for improving the

capability of the method of solution.



CHAPTER TWO

LATTICE ANALOGY OF A LINEAR MEDIUM

The solution of problems in elasticity generally involves the deter-
mination of the unique states of stress and of strain throughout a body which
result from a particular set of boundary conditions. The familiar equations
which govern the solutions are listed below for convenience. Identification
of symbols are found in the list of symbols.

The three equations of static equilibrium are:

oo oT oT

—_—X —_YX =

Sx + 3 + Eﬂ + X o (1a)
oT 30 oT _

ettt t Y=o (1b)
oT oT oo

—XZ —_—1F — =

raniy Sy t 5>+t 2 o. (1c)
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The equilibrium equations and compatibility equations are applicable

to ary linear or nonlinear continuous medium where only small strains are

experienced. For an isotropic medium the twenty-one elastic constants in

Hooke's law will reduce to only two independent constants, namely a modu-

lus of elasticity E and Poisson's ratio v

The medium is considered to

be isotropic in the developments which follow.

relations will be as follows.
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Where in terms of the elastic constants E and v

{(1-v)E
€1 T To)1-2v)

_ vE
€2 T [Mv)(i-2v)

E
€3 T Z(v)

For convenience and clarity in presenting the lattice analogy of a con-
tinuous medium, two-dimensional stress-strain problems will be considered
in detail and example solutions will be presented. Two-dimensional stress-
strain problems are classified as either plane stress or plane strain. Two
lattice analogies for the plane stress problem will be referenced and illus-
trated in the next section. A lattice analogy for the plane strain problem will
be developed following the plane stress analogy. An extension of the analogy
to the general three-dimensional state of stress will be discussed following

the two-dimensional treatment.

Lattice Analogy for Plane Stress Problems

The physical analogy between the behavior of a continuous medium
and an articulated framework has been studied and reported by several re-
searchers, dating from 1906. K. Wiehardt, 1906, and W. Reidel, 1927,
studied the subject of plane stress analogy by framework methods in a some-

(21, 15)

what restricted manner,. A more comprehensive presentation of the

lattice analogy for an isotropic linear medium was given by A. Hrennikoff,
1941. (M During essentially the same period, D. McHenry reported a simi-

lar study to that of Hrennikoff. (12,11)




Essentially, the lattice analogy method consists of representing a
continuous body by a lattice consisting of simple structural elements which
are grouped together to form individual lattice cells. The individual lattice
cell is such that it possesses the same deformability characteristics under
any type of uniform stress as that of a corresponding block of the continuous
medium. When the dimensions of the lattice cell becomes infinitesimal, the
lattice representation of the continuous body becomes rigorously equivalent
to the continuous body. The lattice system is given the same external out-
line and the equivalent boundary conditions as that of the continuous body.
Stress conditions on the body are represented by static equivalent loads at
node points of the individual lattice cells. Distortion of the body is repre-~
sented by movements of node points. The resulting frame analysis problem
is solved by conventional stiffness methods. (14) The solution involves find-
ing the resulting movement of each node point. The state of strain at the
center of each lattice cell is based on various strain components which are
expressed in finite difference form using adjacent node movements. The
state of stress at the center of each lattice cell is then obtained from the
known or assumed relationship between states of strain and states of stress.

In the developments to follow, the medium is assumed to be hyper-
elastic. That is, for a given state of strain there is only one unique state
of stress.

The lattice analogy of a continuous medium will be illustrated by con-
sidering the conditions of plane stress. The condition of plane stress is
used mainly for the sake of clarity; however, since this condition is often

encountered in actual stress problems, the plane-stress analogy is a prac-
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tical analytical tool. A problem will be solved at the end of this chapter to
illustrate the plane stress analogy.

In the development of their lattice analogies, neither Hrennikoff nor
McHenry stated fully the governing equations for plane stress. The condi-
tions of plane stress are described by the condition 0, = T,, = T, = o
and o,, C© Ty

are functions of x agnd y only. For a linear isotropic

y? y

medium this stress condition implies that ¢,, €;, €,, vy are inde-
pendent of 2z and that v,,, Y,, are zero. The governing equations,
Egs. 1, 2, and 4, will reduce to the following for plane stress.

The equations of static equilibrium for plane stress are:

oc oT

—_—k —_—XY -

ox + 3y + X o (5a)
do oT

—_—Y —XY =

Sy + S + Y 0. (5b)

The equations of compatibility for plane stress are:

e, ®e, _ Py,

oy T = T Oxdy (6a)
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= ° el

2 —_
-g;sl =0 (6¢)

—Z = 0. (6d)



The equations for Hodke's law for plane stress are:

(T%?> ("'x + Vev) (7a)
y (T—'EU?> (ev + Ve*) (7b)
€2 = G%‘D ("* + "V> (7c)

o]
»
|

Q
1

Tay = <7(‘1}%T)> Yxy (74d)

The equations involving the strain ¢, , Egs. 6b, c, d, were not
cited and were not used in the developments of the various latftice cells pre-
sented by Hrennikoff and McHenry. The apparent reason for this omission
is that even though the solution of plane stress problems obtained by neglect-
ing these additional compatibility equations are not exact, they are neverthe-
less very good approximations of plane stress problems. (18)

The structural configuration of a lattice cell used to represent a con-
tinuous block of material is not arbitrary, although it is not unique. There
have been several lattice cells proposed in the literature, but the majority
of these cells are restricted to one value of Poisson's ratio. The two lat-
tice cells which are the most general in the application of problems dealing
with plane stress in a linear isotropic material are those suggested by
Hrennikoff and McCormick. Figure l presents the lattice cell suggested by
Hrennikoff in 1941. (7) Figure 2 presents the lattice cell proposed by

McCormick in 1963. (10) For Poisson's ratio equal to 1/3 these two lattice

cells become identical in structural configuration.
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Both Fig. 1 and Fig. 2 illustrate graphically the deformability equiva-~
lent between the lattice cells and the corresponding blocks of the continuous
body for any arbitrary uniform stress condition. The lattice analogy of a
continuous b ody employing either of these cells will be equivalent to the
continuous body for any arbitrary uniform stress condition, regardless of
the mesh size. If the stress condition is non-uniform in nature, the degree
of approximation of the lattice analogy will be dependent upon the mesh size.
The structural elements A, A;, A, and 1 for both cells are ex~-
pressed in terms of the Poisson's ratio v , the side dimension of the cell
a , and the thickness of thecell t . A, A;, A, arecross-sectional
areas of the structural members. 1 is the moment of inertia for the side
members in the McCormick cell. The modulus of elasticity E is the
same for both the continuous body and the lattice. The dimensions of the
side elements A and I would be twice that given by the equations in
Fig. 1 and Fig. 2.

In a discussion of McCormick's paper of 1963, Hrennikoff criticized
the efficiency of the lattice cell proposed by McCormick. (6) Hrennikoff's
criticism was that in McCormick's cell three components of movement of
each node point are needed to describe the distortion of the lattice network,
while in Hrennikoff's cell only two components of movement at each main
node point are needed since the cell is simply connected. The degree of
indeterminancy of a given lattice system based on Hrennikoff's cell would
be 50 per cent less than the same lattice system based on McCormick's
cell. In even a crude lattice system this difference is of computational
importance.

In the initial stages of this study both McCormick's and Hrennikoff's
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cells were used. Solutions to several identical stress problems were
made using both cells. The solutions agreed with each other. Since the
purpose of this study was to develop a method for solving stress problems
involving nonlinear mediums which automatically requires iterative proce-
dures, the matter of computational efficiency was of primary importance.
For this reason the Hrennikoff cell was used in developing a procedure for
solving nonlinear stress problems.

The method for the solution of linear problems employing Hrennikoff's
simply-connected model will be outlined in detail following the section
which presents the simply-connected lattice analogy for plane strain prob-

lems.

Lattice Analogy for Plane Strain Problems

The literature review of this study revealed that the lattice analogy
technique has not been developed for plane-strain problems. Since this
type of strain condition is encountered quite often inclassical as well as
practical stress problems, the extension of the lattice analogy to encom-
pass plane-strain problems was deemed worthwhile. The development of
a general lattice cell valid for any Poisson's ratio is presented here for
the condition of plane strain.

The conditions of plane strain are such that the strain components
€ = Yxz = Yyz = O and €, €, Yy, are functionsof x and y
only. For a linear isotropic material this strain condition implies that

Oxs Oy, Tyy, O, are functionsof x and vy only, and that

Tgz = Ty, = o0 throughout the medium. The governing equations, Egs.

1, 2, and 4, simplify as shown for plane-strain conditions.



The equations of static equilibrium for plane strain are:

_a_Gx_+__a__'_T_u+X

> T 3y =0 (8a)

T o0

Y =

3% + ?—YL + Y o. (Sb)
The single equation of compatibility for plane strain is:

d%¢ e, _ %y,

5 T F T 3%y (9)

The equations of Hooke's law written in the form of strain as a func-

tion of stress for plane strain are:

€, = l:l'};_\’] [(1—\))0, - vcy] (10a)
€, = l:l-]-%z] [:(1--\1)6y - vcx] {10b)
Y = [, (10c)

The equivalent criteria for a lattice cell is that it possesses the same
deformability under any uniform stress condition as that of a similar size
block of continuous medium. Stated concisely the criterion of a lattice cell
representation of a continuum is that it will deform identically with the con-
tinuous body under every possible uniform stress condition. This criterion
for plane strain may be stated conveniently in terms of the following three
conditions, although other equivalent formulations are possible. These

three conditions closely parallel the conditions formulated by Hrennikoff in
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deriving his plane stress analogy. Figure 3 is used to illustrate these con-
ditions.

1. If the lattice in Fig. 3a is loaded uniformly with normal loads
P per node as shown in Fig. 3b in the x-direction and —1—\3—\)-P in the
y-direction, the resulting deformations of the lattice cell should be the
same as that of the continuous body shown in Fig. 3b, thatis 4; = A;.
In other words the node deflections written in terms of the cell charac-

teristics A, A;, A, should be identical with that of the deformation

of the continuous block. This criterion is stated below in equation form.

Gx(l‘("l\i)\()};gz\))a = Az = ¢,(A, A, A;,P) (11a)

eya = o = @5(A, Ay, Ay, P). (11b)

2. Reversing the loading condition above, two similar equations are

produced.

€xa' = 0 = ¢3(A’A11A2’P). (11C)

o, (1+Vv)(1-2v)a
(1-v)E

€ya = = Pq (A, Ay, Ay, P), (11d)

3. If the lattice cell is loaded uniformly at node points with a shear-
ing load S as defined in Fig. 3c, the resulting deformation of the lattice
cell should be the same as that of the continuous body, thatis Ay = Ag.

This criterion is shown below in equation form.

bo = vapa = HEN o s AL = 0s (A AL AL, S), (12)
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It should be noted that a proper combination of the three previous con-
ditions will produce any conceivable state of uniform stress and consequently
a lattice cell which obeys the previous conditions will be a valid analog of
the continuum under any uniform stress conditions.

Equation lic is not an independent equation, but follows from Eq. 1llb
by Betti's reciprocal theorem. Therefore, the number of independent
equations involved in the three conditions is four, and it follows that a cell
which possesses two axes of symmetry must in the general case possess
four independent characteristics. Should the axes of symmetry be identi-
cal in the two directions, the number of necessary conditions reduces to
three and Eq. 11d or Eq. lla becomes superfluous. If the cell is deficient
in characteristics by one, the condition of equivalent deformability is satis-
fied only for one particular value of Poisson's ratio, which would play the
part of the missing characteristic. In order to incorporate both the plane
stress and plane strain cells into one computer program, the geometrical
configuration of the cell for plane strain was chosen to be identical to
that of the Hrennikoff's plane stress cell. This cell has two axes of identi-
cal symmetry; therefore, only three characteristics A, A;, A, are

| necessary for the cell to be completely general in regard to values of
Poisson's ratio. The definitions of these characteristics are derived by
writing expressions for the deformation of the lattice cell in terms of the
cell characteristics and equating these expressions to those for the de-

! formation of the continuous block as depicted by Eqs. 1l and 12. The solu-
tion of these expressions will yield the definition of the characteristics.

From Fig. 3b since there is no extension in the y-direction, the bar

force F, 1is equal to 0 and for equilibrium in the y-direction at a corner




J2v
(1-v)

node the force F, 1is equal to

(&) ).

For equilibrium in the x-direction

P or

or

_ (oxat> ((1-2\))
- 2 (1-v)
The elongation Az of the lattice cell in the x-direction is therefore
A, = Fa o _ <Gxa3t> ((1-2\:))
3 T TAE T 2AE (1-v)

Equating A3 to 4, vyields the expression of the cell characteris-

tic A.

CoieD) (H51) - =il

at

A= Sy . (12)

b

The elongation of the diagonal members A; for small deformations

with zero lateral contraction in the y-direction is Ag = 7%’— . Figure 4

is used to derive the expression of Az in terms of the characteristics
A, and A, and the force F, . Equating this expression for Ag to

7A92— yields an equation for A; and A,
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_ vga®t 1 1 _ By 2t (1-2v)
bs = (I-VW2E \/2A, + /'ZA1+2A2> - 7'32' - %ZAE(l-v).

The cell characteristic A is defined by Eq. 12. Substituting this

expression for A into the above equation yields a relationship between

A, and A,

( LU 1 ) _ (1-2v)(1+v)
J2A; * J2A,+2A, vat

(13)

In Fig. 3c the lattice cell is deformed by the shearing load S
applied at node points. It should be noted that under the influence of the
shearing distortions the elements A, are not strained and similarly the
side elements A also are not strained. For static equilibrium at the
node points Fg = Fg=/2S; Fg Dbeing tension and Fg being compres-

sion.

An expression for Ay is therefore

Fs/2 2F 2T, 2%t
b= (BRr) e - 5 - P

Equating A; of the continuous medium to Ag of the lattice cell

vields the definition of A,

2(1+Vv)1, . a J2T1,., a%t
= = - Xy = = Y - xy _ -
ba Yxy @ E be AE

- L

M= 7Ty e




Substituting this expression for A; into Eq. 13 yields the defini-
tion of the characteristic A;.

at (4v-1)

A2 = FEPE) - 1)

The definition of the lattice cell developed here for plane strain is
summarized in Fig. 3. Reiterating, the geometrical configuration of the
above plane-strain lattice cell is identical with that of the plane-stress
lattice cell presented by Hrennikoff, but the structural configuration is
different. It should be noted here that only characteristic A is dif-
ferent, that is, the center core of each lattice cell. Because of this geo-
metrical similarity, the same computer program may be used to solve
stress problems with the exception that in the generation of stiffness co-
efficients the proper definitions of the characteristic A; must be con-
sidered. In Appendix I the description of the computer program which em-
ploys both of these cells is presented. In the following section the method
of solution will be outlined in detail, and the remarks will be equally ap-

plicable to either cell.

Method of Solution by the Lattice Analogy

The theory and procedure for solving stress problems in a linear,
isotropic medium under the conditions of plane stress or plane strain by
employing a lattice analogy were reviewed briefly in the preceeding sec-
tions. This section will detail the various steps involved in obtaining a
solution by the lattice analogy technique. The method of solution outlined

here will be concerned with the lattice cell shown in Figs. 1. and 3. When



Hrennikoff proposed the lattice cell in Fig. 1, there were no high speed
computational facilities available to solve the resulting large system of
simultaneous linear equations; therefore, to obtain solutions for example
problems Hrennikoff solved the lattice systems by the method of succes-
sive joint displacements. This procedure resembled closely the method
of moment distribution developed by Hardy Cross for frame solutions and
was carried out by lengthy hand computations.

With the advent of the high-speed digital computer, a more efficient
means of solving large systems of linear simultaneous equations became
available. Improved methods for computer solutions are currently being
developed and published in the literature. Hence, the use of the digital
computer to solve the system of equations involved in the lattice analogy
greatly increases the usefulness and the practicality of this type of stress
analysis.

The various steps involved in the solution of a stress problem in a
linear isotropic medium by the lattice analogy method are listed here in
sequence. This outline of operation is in essence a general flow diagram
of the computer program written for this method of solution.

1. The continuous body is represented by a lattice consisting of
individual lattice cells and having the same geometrical boundaries as
that of the body.

2. Boundary conditions in terms of deflections or loads at main
node points are applied to the lattice to represent the boundary conditions
of the continuous body.

3. The unique system of linear simultaneous equations resulting

from the lattice representation and the applied boundary conditions is
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generated. The resulting movements of the main node points are obtained
from the solution of this system of equations.

4. From the obtained node movements, strain components are com-
puted by finite difference techniques. These strain components are used to
determine the states of strain at the center of each lattice cell.

5. From the states of strain, the states of stress are obtained at
the center of each lattice cell by the known relationships between states
of strain and states of stress.

Figure 5 presents in part the indexing used in representing a contin-
uous body by a lattice analogy. For convenience in this presentation, the
continuous body is considered to be rectangular in shape. With simple
modifications to be discussed later, irregularly shaped bodies can be con-
sidered quite easily. As shown in Fig. 5, each cell is assigned two elas-
tic constants E and v . The structural elements of each cell A,
A,, A, are based solely on the side and thickness dimensions of the
cell and these two elastic constants.

The movement of each main node is described by the two transla-
tions Xp,-1, Xz and similarly the external loads (that is, loads
simulating stress conditions on the boundary or body forces in the interior
of the body) on the main node points are described by two forces f,,-,,
fzn . This type of ordering shown in Fig. 5 will yield advantages in com-
putational schemes. The chief advantage is that when the linear simul-
taneous equations are written in matrix form, the resulting '"stiffness
matrix' will be a multiple-diagonal-band matrix, which is an advantage
from a computational standpoint. For reference, the main node points

are ordered as indicated.
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As stated previously, conventional stiffness methods are used to
solve for node movements resulting from the applied boundary conditions.
Figure 6 is used to derive the two equilibrium equations, Eqs. 16a and
16b, which can be written at each main node point in terms of stiffness co-
efficients, node movements, and external loads. The indexing shown in
Fig. 6 is consistent with that presented in Fig. 5. The various stiffness
coefficients needed to write the two equilibrium equations are listed in
Fig. 6. These stiffness coefficients are derived in Appendix I. By equa-
ting the sum of the individual forces resulting from the adjacent and cen-
tral node movements and the external loads £; to zero, the two equations
of equilibrium are generated. The equation for forces in the x-direction

is:

(SSW)XZn_n + (SSW)in__n + (SWl)XZn

w2-3 w2-2 -nw2-1

+ (-SWZ)XZn-:n

w2 + (SNW)in_n

+ (—SNW)XZ

w2+1 n-nwi+2

+

(SS3)XZn + (SSZ)XZn + (SCENI)XZn + (SCENZ.)XZn

-3 -2 -1

+ (SN3)X + (-SN2)X + (SSE)}X

2n+l 2n+2 Zntnwl-3

+

(-SSE)X + (SE}X + (SE2)X

2ntnw2-2 2ntnw-1 2ntnw2

+ (SNE)X + (SNE)X + f = 0. (16a)

2ntnw2+1 2ninw2+2 2n-1

The equation for forces in the y-direction is:

(SSW)XZn-n + (SSW)X + (SW2)X

w2-3 2n-nw2-2 2n-nw2-1

+ (SW3)XZn—nw2 + (—SNW)XZn-nw2+1 + (SNW)XZn—nw2+Z

+ (-SSZ)XZn + (SSHX + (SCENZ)XZn + (SCENI)XZn

-3 2n-2 -1
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+ (SN2)X + (SN1)X + (-SSE)X

2n+1 2n+2 2ntnwi-3

+ (SSE)X + (-SEZ)XZrH_r1 + (SE3)X

2ntnwa-2 wo-1 2n+nwl

+ (SNE)X + (SNE)X + £ = 0. (16b)

2n+nwa+1 2n+nw2+2 2n

The above notation for stiffness coefficients, node movements, node
loads, and the subscripting is the same as that used in the Fortran pro-
gram, BODY 2, Appendix I. Where ever possible the same notation will be
used in the text and in the Fortran programs. This is a departure from
convention but it is considered to be an improvement.

For the purpose of later discussion, it is noted here that the equi-
librium equations about an interior node point involves eighteen node
movements.

The stiffness matrix equation, Eq. 17, is generated by writing these

two equilibrium equations about each main node point:
[s] e = (0. (17)

The boundary conditions involving stresses or body forces are repre-
sented by the vector (f) . In order to specify boundary conditions involv-
ing distortions of the body, the corresponding node point movements are
specified. To specify a node movement the equilibrium equations for
forces in the direction of the particular node movement is deleted from the
matrix equation. An equation is inserted that forces the movement of the
node to be the desired value. The solution of this modified matrix equa-
tion yields the resulting node movements throughout the lattice. The method

for solving this matrix equation is a direct elimination process which uses



[ T3
w
(=]

to full advantage the diagonally-banded characteristic of the stiffness ma-
trix. Several possible means for solving diagonally-banded matrix equa-
tions will be discussed and reviewed in a later chapter for the purpose of
making recommendations for extending the method of solution to more
complex two-dimensional stress problems and to three-dimensional stress
problems.

From the obtained node movements the state of strain at the center
of each lattice cell is calculated by use of finite difference representations
of various strain components. Figure 7 illustrates this scheme. From

Yzy, Principal strains €, €, are

the strain components €, , ¢ s
i i i

¥y,
computed along with an orientation angle Gl_xi »  which is measured from
direction of the maximum principal strain €; to the x-direction. Counter-
clockwise angles are positive. Sign conventions are given in Fig. 7.

The state of stress at each cell is computed from the known relation
between strain and stress. Stresses that are obtained at the center of each
cell are the principal stresses o1, and Oz, and the normal stresses
and shearing stresses in the xy-direction o, ,, 0, , Ty, .

In the computer program written for this study, non-rectangular-
shaped bodies may be handled by simply specifying that certain lattice cells
which lie outside the boundary of the body possesses a zero stiffness (E = 0).
If this scheme becomes too inefficient, modification of the logic involved in
the generation of the stiffness matrix may be necessary in order to repre-
sent irregularly shaped bodies. Since each cell can be assigned individual
elastic constants, the method of solution will handle stress problems in

nonhomogeneous mediums by simply representing piecewise, to a scale of

the cell dimension, the nonhomogeneity of the medium.
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A listing of the computer program BODY 2 based on the lattice cells
shown in Figs. 1 and 3 is presented in Appendix I. A program based on
McCormick's lattice cell is presented in Appendix II. In the following sec-

tion two example problems will be solved.

Illustrated Two-Dimensional Stress Problems of Plane Stress and Plane

Strain

This section will illustrate the use of the lattice analogy by solving
two problems, one of plane stress and one of plane strain, in linear iso-
tropic mediums.

In addition to the problems illustrated here, several other problems
were solved. A vertically loaded sheet-pile wall was analyzed. The sheet-
pile problem is a soil-structure interaction problem. For this problem a
lattice representing the soil medium was first generated. This lattice was
modified by the addition of the sheet-pile wall as an additional structural
member. This modified lattice was then solved. By similar means other
two-dimensional soil-structure interaction problems could be analyzed.
Several beams and short column problems were solved giving quite satis-
factory results. Problems covering the three cases of uniform stress con-
ditions have been solved and the solutions agree with the theoretical solu-
tions, thus confirming the validity of the lattice cells and the computer
program.

The first illustrative problem to be described is the cantilever beam
shown in Fig. 8a. The left end of the bearmm is considered to be rigidly fixed
and the right end is subjected to the loading shown. This is a problem of

plane stress and the lattice proposed by Hrennikoff is applicable. The
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ordering shown in Fig. 8b of lattice cells, node movements, and node loads
is in accordance with the scheme presented in Fig. 5. The various boundary
conditions which are imposed on the lattice to simulate the boundary condi-
tions of the continuous body are listed in Fig. 8b. The fixed condition of

the left end is represented by specifying all node movements along this edge
of the lattice to be zero. The stress conditions shown in Fig. 8a is repre-
sented by static equivalent loadings shown in Fig. 8b.

The solution of the problem is illustrated in part by Fig. 9. The dis-
torted lattice is shown. By magnifying the horizontal deflection scale the
shear distortion of the vertical face A-A, which is not considered in con-
ventional beam theory, is shown. Strains and stresses at the center of each
lattice cell are computed from this distorted lattice by use of finite differ-
ence representations of strain components.

In order to demonstrate a method for studying stress concentrations,
the lattice shown in Fig. 10a was employed. This lattice is the right portion
of the cantilever beam shown in Fig. 8b. The size of the cells in Fig. 10b
is one-half the size of the cells used in the initial analysis in Fig. 8. The
reduction of the size of the lattice cell was made in order to reflect more
properly the highly nonuniform stress conditions occur®ingin the right end
of the cantilever beam. The node movements occurring along the vertical
Section GC-C obtained from the solution based on the lattice of Fig. 8 were
used as boundary conditions for the problem in Fig. 10. The input and out-
put data for this solution are given in Appendix III.

The resulting stress distributions obtained from this finer lattice are
presented in part in Fig. 10. As can be seen, the stress distributions are

considerably different than those which would have been calemlated from
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conventional beam theory. The stress distributions onthe vertical face

F-F were numerically integrated and the resulting forces are shown in
Figs. 10b and 10d. Static equilibrium checks show that acceptable accuracy
was obtained.

Compatability checks were made for the strain values at several lo-
cations in the right section of the beam and compatibility of strain values
checked within 5 per cent. As an example, the compatibility check at cell
No. 28 is shown below. Strain values at the adjacent cells are used to
represent the compatibility equation, Eq. 6a, in finite difference form,
and are taken from the output data of the problem in Appendix III. It should
be noted that the x y axes are rotated 90 degrees counterclockwise to

1

form the x' vy'

axes in the finer mesh solution shown in Fig. 10a. The
compatibility equation is written with respect to this x' y' - reference

system.

2 e, 3%e,t D%yt
By'é + Bx'd T ox'ay!

% e, 32 e, €y log =2€ 1gtE 1 € tga-2€, gt e,
y? T axe h? + P

1.95117250 - (2)(2.15110931) + 4.14514420 10-8
(0.5)*

-+

(—1.37979818 - (2)(-5.95871909) - 11.5039918)10_5
(0.5)°

+0. 00003311 .
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v

gQJ'axL'z 'viie 1 szl'fg = YxY'21 - Yx'y'as
X oy

_ 3.22355827 + 4.94522040 - 3.09887636 - 4.74811210 -4
= (4)(0.5)2 10

=+0.00003218.

As canbe seen, the error is small.

The second example of two-dimensional stress problems involving a
linear isotropic medium is the long strip footing shown in Fig. lla. Since
the footing is relatively long compared to its width, the problem may be
considered to be one of plane strain. It is desired to compute the initial
pressure distribution beneath the uniformly distributed load. The technique
of solution is shown in Fig. 1lb. Four solutions were made to approximate
the semi-infinite half space of the actual problem. In the crudest mesh,
the fixed boundaries are 200 feet away from the loaded area or twenty
times the width of the footing. Deflections of the cruder lattice were used
as boundary conditions for the next finer lattice in identically the same
manner as the cantilever beam problem. The results are illustrated in
part by Fig. 12. The vertical pressure distribution obtained from the lat-
tice analogy solution agrees within the accuracy of the pressures computed
by conventional means, a solution of Boussinesq's equations in chart form

(18)

for a linear isotropic medium. The deflection of the ground surface
and of the entire medium as well as the states of strain and stress through-

out the medium are obtained from the lattice analogy solution. It should

be readily appreciated that many other types of strip footing problems
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could be solved simply by altering the boundary conditions either in terms
of deflections or pressures in the footing area.

Both theory and experience have shown that the distribution of verti-

cal pressure is more or less independent of the physical properties of the

medium. Conventional engineering practice is to assume the medium to

(17)

be linear when calculating vertical pressures for consolidation predictions.
While vertical pressure distributions are not highly dependent on soil proper-
ties, the states of stress are dependent of soil properties and will vary ap-
preciably from the linear case depending upon the nonlinearity of the soil.
Since the consolidation of a soil is dependent on the states of stress and

not just the vertical stress, the degree which the states of stress vary with
nonlinearity needs to be studied. The method for solving two-dimensional
stress problems in nonlinear mediums to be presented in the next chapter
can be used in this regard. The above footing problem will be solved con-

sidering the soil medium as nonlinear.

Lattice Analogy for Three-Dimensional Stress Problems

In the preceding sections lattice analogy techniques were developed
and used to solve stress problems for particular stress conditions (plane-
stress and plane-strain) in linear isotropic mediums. This section will
discuss briefly the extension of the analogy to the general three-dimensional
stress problem.

An extension of the lattice analogy technique to the three-dimensional
case was partially made when Hrennikoff proposed the three-dimensional
lattice cell shown in Fig. 13 for a linear isotropic medium. (7) Since this

lattice cell possesses three identical axes of symmetry, only three struc-
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tural characteristics A, A;, A, are necessary. In Hrennikoff's
presentation only brief remarks were made in regard to the development
of a complete method of solution based on this three-dimensional lattice
cell. For a complete method of solution which is of practical use, the
technique for generating the stiffness matrix equation and an efficient
method for solving this matrix equation are required. While the genera-
tion of the stiffness matrix equation is primarily a straightforward exten-
sion of the two-dimensional cases cited above, it is nevertheless a step
which needs some study in order to obtain a versatile and efficient method.
The second step, the solution of the expanded matrix equation, is by far
the most difficult aspect involved in this extension. Recommendations for
solving the expanded matrix equation will be presented in the next chapter.
Since the lattice cell shown in Fig. 13 is simply connected, only
three translational components of movement of each node point are reqi).ired
to describe the distortion of the lattice. In the two-dimensional stress
case only two components were required. In writing the three general
stiffness equations about an interior node, that is, the three equations of
static equilibrium in terms of node movements and structural stiffnesses,
the procedure used in Appendix I for the two-dimensional case is recom-
mended. Again, only three stiffness coefficients SA, SAFA, SASP
are needed to describe fully the deformability characteristics of an indi-
vidual lattice cell. A two by two by two lattice representation of a cube
is shown in Fig. 14. From this figure it is seen that a total of 45 node
movements are involved in the three equilibrium equations about an inter-
ior node, while in the two-dimensional case only 18 node movements were

involved.
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FIGURE 14 A TWO BY TWO BY TWO LATTICE REPRESENTATION OF A CUBE
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The extension of the lattice analogy technique to the general three-
dimensional stress case is deemed feasible and practical for some stress
problems involving linear isotropic mediums. While this extension will
not require additional theoretical developments of the analogy, it will re-
quire considerable formulation and programming and applications of im-
proved methods for solving large systems of equations. Additional recom-

mendations for the extension are presented in Chapter 4: .




CHAPTER THREE
LATTICE ANALOGY OF TWO-DIMENSIONAL STRESS PROBLEMS

IN NONLINEAR MEDIUMS

Many engineering materials have nonlinear stress-strain behavior.
Solutions of stress problems by the theory of elasticity based on linearity
assumption for such materials are approximations. The degree of ap-
proximation is dependent on the degree of nonlinearity of the material.

In this section a method for solving two-dimensional stress problems,
which will consider the nonlinearity of the medium, will be developed

and two example problems will be solved. The method is based on the
lattice analogy presented in the preceding chapter for stress problems in
linear isotropic mediums. Essentially, the procedure consists of repre-
senting small sections of the nonlinear medium (sections being the size of
the lattice cells) by pseudo-sections of linear isotropic material which are
defined by two pseudo-elastic constants E and v. When subjected to

the same state of strain which exigsin the nonlinear material, the pseudo-
linear block will develop the same state of stress as that existing in the
nonlinear material. In general this representation of a nonlinear material
by a pseudo-linear material will be instantaneous in nature; that is, for
each state of strain there exists a particular instantaneous pseudo-linear
material representation. The key to the solution of a problem is to find
the particular pseudo-linear material (E and v for each lattice cell)
which will properly represent the behavior of the actual nonlinear medium

under a given set of boundary conditions.
¥
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For convenience in presenting the lattice analogy, the nonlinear
medium is considered to be homogeneous and isotropic in its physical
properties. The medium is also considered to be hyperelastic; that is,
the state of stress is only a function of the state of strain and is not de-
pendent upon the history of stress and strain. Stated more concisely, for
every state of strain there exists a unique state of stress.

The above considerations are made only to facilitate the presentation
of the basic theory and are not totally rigid limitations to the general
lattice technique. Nonhomogeneity could be represented to a scale on the
order of the lattice cell dimension. This would involve additional inter-
pretation schemes in the method of solution (computer program). Non-
hyperelasticity could be considered only if considerable logic and memory
capabilities were included in the method of solution. Obviously, develop-
ment of a capability to solve stress problems involving hyperelastic me-

diums has to precede consideration of the nonhyperelastic problem.

Representation of a Nonlinear Medium by a Pseudo-Linear Medium

As previously mentioned, the method for solving two-dimensional
stress problems in nonlinear mediums by the lattice technique depends
upon the ability to represent the behavior of the nonlinear medium under a
given state of stress by a pseudo-linear isotropic material. In general this
representation will be instantaneous in nature, but it will be sufficient in
its approximation to describe the nonlinear medium over a small range of
behavior. The range of approximation will be dependent upon the degree

of nonlinearity.
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In order to illustrate better the method of solution to be presented in
the next section, graphical representations of the stress-strain behavior
of a linear and a nonlinear material under the conditions of plane-stress or
of plane-strain are shown in Fig. 15. If the material is linear, the plane
surfaces shown in Fig. 15a would describe the relationships between states
of stress and states of strain. These two planes are simply a graphical
representation of Hooke's Law as given by Eqs. 7a and 7b or Eqs. 10a and
10b. If the material is nonlinear, the two surfaces would not be plane, but
rather would be warped as depicted in Fig. 15b.

Analytical expressions of the nonlinear functions o, = f(&§, ¢;) and
Oy = fl(eg, €,) in Fig. 15b for engineering materials have not been published
to any extent in the literature. Quite obviously the prerequisite to an ana-
lytical solution of a nonlinear stress problem is a description of the stress-
strain relationship. This stress-strain information would be either in the
form of approximate analytical functions of the actual stress-strain relations,
or in the majority of cases, in the form of numerical data from a series
of experimental tests. A possible scheme for the latter type of information
is illustrated in Fig. 16. The warped surface of the nonlinear material
would be represented by discrete points of experimental data. This type
of digitized information is readily adaptable as input information for a
digital computer program.

The method of solution involves determining the unique pseudo-linear
material which will possess the same state of stress as that of the nonlinear
material for the same state of strain. The characteristics of the pseudo
material can be considered as instantaneous and can change with each itera-

tion. Since in an actual problem the states of stress and strain will vary
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throughout the medium, the nonlinear medium is represented piecewise
by incremental sections (individual lattice cells) which are pseudo linear.
The procedure for determining the pseudo-linear material, which will in-
stantaneously possess the same deformability characteristics as that of
the nonlinear material is as follows:

1. For a given state of strain in the nonlinear material €; and
€; the resulting state of stress o, and o, is obtained from the
stress-strain relationships such as shown in Fig. 15b. (The assumption
is made that in the nonlinear isotropic material the principal directions
of strain and stress are the same.)

2. The values of the elastic constants E and Vv for the pseudo-
linear materials are computed from the two equations of Hooke's Law,
Eqgs. 7a and 7b or Eqgs. 10a and 10b.

3. With these elastic constants the structural elements of the lattice
cell are computed from the equations which define the structural elements,
Figs. 1 and 3.

In essence the elastic constants simply define the two secant planes
which will intersect the warped surfaces of the nonlinear material at the
instantaneous coordinates ‘0, €, ¢€; and 0, €,, €3 . By the
above procedure the properties of each lattice cell in the entire lattice
are obtained. Iterative procedures are required to find the unique lattice
representation of the entire nonlinear medium for each set of boundary

conditions.
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Method for Solution of Two-Dimensional Stress Problems in Nonlinear

Mediums

The theory and procedure for solving stress problems using a lattice
analogy of a linear isotropic medium were presented in the preceding
chapter. A technique of representing a nonlinear material by a pseudo-
linear material was described in the immediate past section. By com-
bining these procedures, a method for solving two-dimensional stress
problems in nonlinear isotropic mediums will be outlined and illustrated
below. Even though these procedures are essentially the same as those
for a linear material, the steps to obtain a solution will be given here.

1. The continuous body is represented by a lattice consisting of in~
dividual lattice cells. The structural elements of these lattice cells are
based on size and thickness dimensions of the cell a and t and the
elastic constants E and Vv for each cell. For the first iteration,
elastic constants are assumed for each cell. In following iterations the
elastic constants used are those obtained from the previous iteration.

2. Boundary conditions in terms of deflections or loads at main
node points are applied to the lattice which was defined in Step 1.

3. The system of linear simultaneous equations Sx =f resulting
from the lattice representation and the applied boundary conditions is
generated. The movements of the main node points are obtained from
the solution of this system of equations.

4., From the obtained node movements, strain components are

computed by finite difference methods. These strain components are
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used to determine the states of strain at the center of each lattice cell.

5. The states of stress at the center of each lattice cell are deter-

mined by entering the stress-strain relationship, o, = (g, €;3)
and o, = f'(el, €5 ), Fig. 15b with the states of strain obtained in
Step 4.

6. Tests for closure tolerance are made for main node point move-
ments. If closure tolerances are not met, the procedure is to go to
Step 7. If closure is satisfied, the procedure is to go to Step 8.

7. Revised pseudo-elastic constants E and Vv are computed
from Egs. 7a and 7b or Eqgs. 10a and 10b according to the stress condi-
tion by using the states of stress and strain obtained in Steps 4 and 5
above. After the computation of these revised elastic constants the pro-
cedure is to go to Step 1 for next iterative cycle.

8. Solution has converged to within the desired tolerance; there-
fore, the procedure is to tabulate results of last iteration for the final
solution of the problem. In the program written for the above method
of solution, the output information consists of the movement of each
main node point x,; the stress and strain components in the xy-

directions o,, © Txys €x» €y5 Yxy; and the principal stresses

v

and strains o0,, &, €;, €, and their orientation angle 0,,,

measured from the 1-direction to the x-direction, counterclockwise

being positive. Stress and strain components are given at each cell center.
The method for solution of two-dimensional stress problems involving

nonlinear mediums detailed above will be illustrated in the next section by

solving two example problems.



g}

54

Illustrated Nonlinear Stress Problems

In the preceding sections a technique for using lattice analogy was
developed for solving nonlinear stress problems. This section will il-
lustrate the technique by presenting solutions to two problems.

Complete stress-strain relationships for nonlinear materials, that
is, relationships which are valid over a wide range of stress states, are
quite limited in the literature either in analytical or numerical form.
Since this study is developmental in nature, a convenient analytical form,
Eq. 18, is used to describe the nonlinear stress-strain behavior for the

material in the illustrated problems.
o, = 25.0 Sin (86.60e; + 50.00¢;).
o = 25.0 Sin (86.60e; + 50.00¢€,). (18)

A graphical representation of Eq. 18 would be similar to the warped sur-
faces shown in Fig. 15b. The unitsof o0, and o0, are lb/in®.

The first problem is one of several simple uniform stress problems
which were solved in the process of developing and verifying the method
of solution.

The problem is shown in Fig. 17. The rectangular block is loaded
along its x-face either by a stress condition o, or a distortion A,.
The z-face is considered to remain plane and does not deflect in the z-
direction. The y-face is a free surface. A summary of these boundary
conditions is given in Fig. 17. The lattice solution and the exact solution

for o, and A, for eight different loading conditions are tabulated in
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Fig. 17. The exact solution for o, versus A, for the above problem

is in equation form.

ox = 25.0 sin (3% a,)

Good agreement between the lattice and exact solutions is achieved
for all loading conditions except for Runs 5 and 6 where o, =
25.0 1b/in.®, a maximum. After 20 and 40 iterations the disagreements
in the deflections A, are approximately 4 and 2 per cent, respectively.
The error in 0, 1is smaller since at this stress level the magnitude of
stress is essentially insensitive to strain. Figure 18 illustrates these
points graphically.

The results tabulated in Fig. 17 are plotted in Fig. 18. The load de-
flection curve is seen to be nonlinear. The solutions for Runs 5 and 6 are
seen to lié in the range where the load-deflection curve has approximately
zero. slope.

Iteration data for several runs are given in Fig. 19. The lattice solu -
tion for Run 6 converges relatively slowly compared to the other runs. Run |
4, while having only a 4 per cent lower stress level, converges considerably
faster than Run 6. This is due to the fact that the 4 per cent decrease in
stress is sufficient to place the solution of Run 4 in a range where the slope
of the load-deflection relationship is substantially larger than Run 6 as can
be seen in Fig. 18. It is interesting to note that while the stress levels
for Runs 6 and 8 are essentially equal, Run 6 required four times the num-

ber of iterations as Run 8 for the same accuracy in solutions. This is be-
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cause the deflection 4, = 0.10!® was specified as the loading condition
for Run 8. Hence, closure tolerance for A, deflections were satisfied
on each iteration and only the A, deflections needed to converge.

As previously mentioned, solutions of several uniform stress prob-
lems for nonlinear mediums were obtained by the lattice analogy tech-
nique. These problems were similar to the problem shown in Fig. 17.
Boundary conditions for these problems involved both uniform distor-
tions and stress conditions along the edges of the rectangular body.

The solutions obtained were in agreement with known solutions. For
these problems the level of stress was varied. In all cases when the
state of stress entered the nonlinear region, the required number of
iterations for solution increased considerably as in the above problem,
Runs 5 and 6. While this convergent characteristic is readily appre-
ciated and is common knowledge, it desires reiteration here.

The closure criterion used in this study was quite simple. The node
deflections obtained for each iteration were compared with the deflec-
tions obtained from the immediately preceding iteration. If the differences
were equal to or less than the specified closure tolerance, the solution
was considered to be converged. This closure criterion could be mis-
leading especially if the stress level is in the plastic range. For
example, consider the iteration data for Run 6 as shown in Fig. 19. The
solution is seen to be converging slowly to the exact solution. The
difference between deflections for each iteration is seen to be quite small
(A, = 0.106707 in., 0.106758 in. for iteration 39 and 40, respectively)

while the exact deflection value is 0.10883 in.



The second illustrative nonlinear problem is a long strip footing
on a nonlinear foundation medium. The stress-strain properties of
the foundation medium are defined by Eq. 18. Solutions were obtained
for six different footing pressures by essentially the manner as for the
linear footing problem in Chap. 2. The scheme of representing the
semi-infinite half space by a crude lattice and then increasing the fine-
ness of the lattice around the foooting area as shown in Fig. 11, Chap.
2, was used. In these solutions the material was assumed to be lin-
early homogenous for the first iteration; that is, the medium was
described by single assumed values of E and v. The same initial
trial values of E and v were assumed in the solution of each lattice
spacing for all six footing pressures. Perhaps a more efficient pro-
cedure would have been to assume nonhomogeneous initial trial values
of E and v based on preceding solutions. .This was not done in this
problem because the time required for entering this data as input is
lengthy. In future studies the merit of using initial trial values E
and Vv on values of preceding solutions should be studied.

Figures 20, 2l,and 22 present, in part, the solution of the long
strip footing on the nonlinear foundation medium described by Eq. 18.
In the upper part of Fig. 20, the loading condition and the deflection
of the foundation at the footing level are shown for the case where
c = 3,000 1b/ft® = 20. 83 1b/in.?. In the lower part of Fig. 20, the
footing pressure versus centerline deflection curve is shown. The
stress distributions for linear and nonlinear foundation media cases

are compared in Fig. 21 and 22. These stress distributions are for
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the 3, 000 1b/ft® footing pressure and 2-1/2-ft lattice cell solutions. Varia-
tions between the stress distributions for the two cases are seen to occur
only in the immediate area around the footing. If comparisons between
stress distributions were made for higher footing pressures the variation
would no doubt be greater. With the capacity of the computer program
written for this initial study, completely satisfactory solutions for the
higher footing pressures were not obtainable. Therefore, the stress dis-
tributions for the case of 3, 000 1b/ft° footing pressure are given here.
For footing pressures of o = 3,000 or 3,280 1b/ft® the vertical
normal stress o0, at the corner lattice cell (the lattice cell adjacent to
the footing center-line and immediately below the surface) was larger
than the applied footing pressure. This occurred in solutions based on
2.5-ft lattice cells. This size lattice cell is shown in Figs. 21 and 22.
During the iterations involved in converging to a solution, the stress o,
at the corner cell progressively grew with each iteration. When the nodal
movements had converged to the specified closure tolerance, the stress

a was slightly larger than the applied footing pressure. For the case

y
where the footing pressure was equal to 3, 600 1b/ft?, a converged solu-
tion was not obtainable for the closure tolerances specified. The reason
for this failure can be explained by noting the stress-strain characteris-
tics of the foundation medium, Eq. 18. The maximum possible normal
stress the foundation medium could support is 25 1b/in.? or 3, 600 1b/ft>.

When the vertical stress o passed this maximum point of the stress-

Y

strain surface, the corner lattice cell became progressively weaker and

the solution therefore diverged. The deflection value shown in Fig. 20
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for a footing pressure of 3,600 1b/ft? is the value given by the iteration

cycle immediately preceding divergence of the solution.

Discussion of Errors Inherent in the Lattice Technique

In the preceding section the lattice analogy solution of the nonlinear
footing problem yielded unrealistic vertical stresses O, in the im-
mediate region beneath the loaded area. The reason for this unrealistic
stress will be discussed here and recommendations made for further study.

To facilitate this discussion a brief review of the lattice technique for
solving stress problems for continuous bodies will be given. The continu-
ous body (referred to hereafter as body) is first represented by an articu-
lated framework or lattice. The lattice possesses to an approximation
the outline of the body. Statically equivalent loads are applied to external
nodes to represent boundary conditions consisting of stresses. Statically
equivalent loads are applied to the interior nodes to represent body forces.
Node deflections are specified to represent boundary conditions consisting
of distortions. Node deflections resulting from these loadings are ob-
tained by stiffness methods. These node deflections are considered to
represent at discrete points (node points) the distortion of the body.
States of strain at discrete points in the body (centers of lattice cells) are
obtained by using these node movements in finite difference expressions of
strain components. States of stress at discrete points in the body (centers
of lattice cells) are obtained by entering the stress-strains relationships
for the body material with the states of strain.

From the above outline the accuracy of a lattice solution of a stress

problem is seen to be basically dependent upon the ability of the lattice




66

analogy to furnish, in sufficient detail and accuracy, the distortion of the
stressed body.

As in other methods of solution of differential equations based on repre-
senting continuous functions by lumped parameters, it is not possible to
formulate a general expression for the accuracy of a solution thus achieved
for a given mesh size. The accuracy achieved by a given mesh size can be
quite different depending upon the nature of the stress problem.

It is beneficial to list here the data which describe completely a stress
problem: (1) the geometry of the body, (2) the material of the body, and
(3) the boundary conditions on the body. All three types of data influence
the requirement of mesh size. The usual procedure followed in establish-
ing a feel for the accuracy of lumped parameter solutions is to study the
cause and effect of each source of error separately. This will be the pro-
cedure here.

Solution of the Stiffness Matrix Equation [S] (x) = (f): The solution

of the stiffness matrix equation yields the distortions at discrete points
throughout the body. These distortions are used to evaluate states of strain
and in turn states of stress throughout the body. Therefore, if the solution
of the stiffness matrix equation is in error, the entire solution will be in
error. The method for solving large systems of simultaneous equations
will involve either direct elimination or some iterative technique. In either
case the solution will be in error to some degree. In regard to the solution
of the stiffness matrix equation, the accuracy should be such that the dis-
tortions can express in finite difference form the components of strain to

acceptable accuracy. When node movements are substituted back into the
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equations of equilibrium about the nodes, the equations should be satisfied
at least to the same degree of accuracy as that desired for strains and
stresses. This criterion can be considered to be a lower bound to the re-
quired accuracy of the solution of the stiffness matrix equation.

Geometry of the Body: The continuous body is represented by a lat-

tice consisting of square lattice cells. Whenever the body is nonrectangu-
lar in shape or possesses irregularities in its boundary, the lattice repre-
sentation can only possess to an approximation the same outline as that of
the body. The degree of approximation decreases as the fineness of mesh
size is increased. With regard to localized irregularities, there exists a
saving factor for many cases in that the error due to the approximation of
the irregularity is dominant only in a small region surrounding the irregu-
larity. If detailed information is desired in the vicinity of the irregularity,
solutions using progressively finer mesh sizes may be made in the region
in question.

Material of the Body: In stress problems, stress-strain relationships

for the material are required throughout the body. If these relationships
are homogeneous throughout the body, there will be no source of error, in
regard to material, created by the lattice representation. If the material
is nonhomogeneous, approximations will exist in the lattice representation
of t he body and a source of error will be introduced. For stress problems
involving nonlinear mediums, the pseudo-linear medium used to represent
the nonlinear medium will be nonhomogeneous. Hence, a source of error
will always exist in regard to material properties in nonlinear problems.

Again, this error is minimized as the mesh size is made finer.
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Boundary Conditions on the Body: The boundary conditions with respect

to stresses or body forces are approximated in the lattice representation of
the problem by statically equivalent loads at node points. The boundary
conditions with respect to body distortions are represented in the lattice
representation of the problem by node deflections. The source of errors
from these procedures is readily apparent. Again, these errors are mini-
mized as the mesh size is decreased. As in the error arising from the
irregularities in the geometrical boundary of the body, the effects of these
approximations of boundary conditions are in many cases dominant only in
small regions surrounding the point of loading or distortion (Saint-Venant
Principle). If detailed information is desired in the vicinity of the applied
stresses or distorted boundaries, solutions using progressively finer mesh
size may be made in the region in question.

Finite Difference Representation of Strains: The distribution of strains

throughout the body are represented at discrete points by strains computed
by finite difference methods using node movements. Even if the node move-
ments are determined precisely by the lattice analogy, the strains compo-
nents will still be approximations of the actual strains since the finite dif-
ference expressions are approximations of derivatives of distortions. Hence,
the scheme for computing strains will always be a source of error. Again,
as the mesh size decreases, the errors involved in the finite difference ex-
Pressions are minimized.

The unrealistic vertical stress o0, obtained in the nonlinear footing

b
problem at the corner cell (corner cell being the cell adjacent to the footing

centerline and immediately beneath the surface) was caused by the inability

of the lattice to represent the highly variable conditions encountered in the




immediate area of the footing. The nonhomogeneity of the pseudo-linear
medium representing the nonlinear medium coupled with the highly nonuni-
form stress and strain distributions in the immediate area of the footing
caused the highly variable conditions.

This conclusion is based on a brief analytical study. The study con-
sisted of solving a similar footing problem to those above. The only dif-
ference being that this experimental problem consisted of a simple rectangu-
lar block with free edges and the medium was considered to be a nonhomogeneous
linear medium instead of the homogeneous nonlinear medium described by
Eq. 18. The width of the rectangular block was 2-1/2 times the length of
the loaded area and its depth was 1-1/2 times the length of the loaded area.
The nonhomogeneous linear medium was approximately the same as the
pseudo-linear medium computed in the third iteration cycle of the solution
for the 3, 000 1b/ft? footing pressure case. For this case the modulus of
elasticity E and the Poisson's ratio Vv for the corner cell were 20 per
cent less and 4 per cent larger, respectively, than for the adjacent cells.
The magnitude of the vertical stress o, at the corner cell obtained in the
solution of this experimental problem was approximately 8 per cent higher
than the footing pressure. The solution of the similar footing problem on a
linear homogeneous medium given in Chap. 2 yielded a o, stress for the
corner cell which was slightly less than the applied footing pressure. This
result indicates that the introduction of material nonhomogeneity was the
cause for the unrealistic 0, stress at the corner cell. The solution of
the lattice was checked by checking the equilibrium about several nodes.
The equilibrium checks showed that the nodes were in equilibrium with the

external loads.



A computer program with a larger capacity than the one written for
this initial study is felt necessary to investigate adequately the effect of
nonhomogeneity. Means of increasing the program capacity are discussed
in Chap. 4.

The stress-strain characteristics defined by Eq. 18 do not realistically
represent an actual foundation medium. For example, the maximum nor-

2 regardless of the

mal stress that could exist in the medium is 25 1b/in.
state of stress in the material. There is very little in the literature de-
scribing the actual shape of the stress-strain surfaces shown in Fig. 15b.
While it is felt that Eq. 18 was adequate for this initial study, it is recom-

mended that additional study be made to obtain more realistic stress-strain

data.




CHAPTER FOUR

DISCUSSION OF COMPUTATIONAL METHODS

The theory and the techniques for solving stress problems in continu-
ous bodies by representing these bodies by lattices of particular structural
characteristics were presented in the preceding chapters. A lattice anal-
ogy of a continuous body results in a system of linear simultaneous equa-

tions represented by the stiffness matrix equation, Eq. 19.
(5]t = @ (19)

The solution of this system of equations yields the movements of each
lattice node point. As stated previously, the feasibility and usefulness of
the lattice analogy technique depend greatly upon the development and usage
of efficient and accurate methods for solving the above matrix equation.
When considering the computational requirements involved in obtaining a
solution of a stress problem in a nonlinear medium, the necessity of effi-
ciency is readily appreciated since several or perhaps numerous iterative
cycles are required in converging to the final solution. Each iteration in
a nonlinear problem requires a solution of Eq. 19.

The solution of partial differential equations, especially the parabolic
and elliptic types, by numerical procedures involves discrete approxima-
tions of these partial differential equations. Matrix equations in the form
of Eq. 19 arise from these approximations. Numerous papers and texts
have been written concerning the various methods of solution of these ma-

trix equations. With the advent of the high speed electronic digital com-
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puters, new methods for solving large systems of linear simultaneous equa-
tions have been or are currently being developed. These methods are almost
exclusively confined to cyclic iterative methods in contrast to non-cyclic
iterative methods such as Southwell's reélaxation method. It is the purpose
of this chapter to enumerate and briefly review several methods of solution
of Eq. 19 which are considered the most promising in the solution of the
particular matrix equation derived from the lattice analogies and to list
several computational schemes which will improve the efficiency of the pro-
grammed méthod of solution. The first section will briefly present the di-
rect elimination procedure used to solve the matrix equation encountered in
the development of the lattice analogy method. The second section will dis-
cuss and reference several possible methods of solution for the extension

of the lattice analogy to three-dimensional problems or to finer lattice sys-
tems in two-dimensional stress problems.

It should be emphasized that solving Eq. 19 is by no means trivial.
While there are several methods currently available for solving relatively
large matrix equations, there exists in the literature little in the way of
concrete recommendations about solving specific types and sizes of equa-
tion systems. Also, the more general recommendations are often contra-
dictory from one study to the next.

For convenience in discussing the various methods of solution of Eq.
19, various properties of the coefficient matrix S are listed here.

1. The matrix S is a square multiple diagonally banded matrix.

Some investigators classify the matrix S as a triple-diagonal-band matrix.

2. The matrix S is a real symmetric mattix. This is true even in

nonlinear mediums since pseudo-linear mediums are used to represent the



nonlinear mediums at instantaneous states of stress and strain.

3. The matrix S is non-singular, that is the determinant of the
matrix S is not equal to zero. Therefore, since the inverse of A ex-
ists there is a unique solution of the matrix Eq. 19 for each load vector f{.

4. The elements s;,4 - along the main diagonal of the matrix S

are non-zero and non-negative.

Direct Elimination Procedure to Solve Stiffness Matrix Equation

Since this study was primarily developmental in nature, a method for
solving the matrix equation Sx = f which would be easily programmed
and would yield sufficiently accurate results for modest sized matrices
was employed. In a study by White of several methods for solving linear
simultaneous equations, conjugate gradients, Gauss-Sidell iterations, ac-
celerated Gauss-Sidell iterations, and Gaussian elimination,, the technique
of direct Gaussian elimination was found to be the most efficient and satis-
factory method for solving diagonally banded matrices with sizes ranging

(20)

up to 150 equations. A direct elimination procedure was employed with

satisfactory results by McCormick to solve the system of equations of his

(10)

lattice analogy. Based on these two papers, the direct elimination
method was used in this study. Details of this method are presented below.
The stiffness matrix S 1is first triangularized by eliminating all non-
zero elements below the main diagonal. The elimination proceeds column
by column, using the main diagonal element in the ith row as the pivotal
element. Only elements in the original band are considered in any column

as it is known that only zero elements exist outside this band width. After

triangularization, the matrix S is then diagonalized in a similar manner.
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During both triangularization and diagonalization, operations performed

on the stiffness elements are performed similarly on the load vector ele-
ments f,. The unknown vector x is evaluated then by simple division.
Because of the sparseness of non-zero elements even within the diagonal
band, logic was included in the program to take full advantage of zero
elements occurring in any row during the resolution process. Since this
method of solution is programmed in FORTRAN language in BODY 2 Pro-
gram, Appendix I, perhaps a more detailed illustration may be obtained by
reviewing this section of the program. As an example of the speed of com-
putation, consider the solution of the matrix equation resulting from the
long strip footing problem. The stiffness matrix S involved 242 un-
knowns and a total band width of 51 elements. The time required to solve
this matrix equation was 39 seconds.

McCormick's experience with a slightly modified direct elimination
procedure to solve his stiffness matrix equation strongly indicated the
suitability of this method of solution for two-dimensional stress problems.
The time required for solutions were quite acceptable. McCormick re-
cords the computer time versus matrix size in a useful graph form. The
direct elimination procedure was used to solve a 20 x 40 lattice system.
For McCormick's lattice cell with v #1/3, this fineness of lattice re-
sults in a stiffness matrix of 2, 583 unknowns and a total band width of
125 elements. The solution was programmed for the IBM 7090 and IBM
7094. It was, of course, necessary to use tapes in this program. The
size of problems that can be handled by a given sized random access mem-

ory is limited by the total band width and not by the number of equations;
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i.e., rows in the dtiffness matrix. With a 32, 000 word memory, the to-
tal band width is limited to approximately 320 elements. This means that
the rectangular width of the lattice is limited to approximately 50 for
McCormick's plane stress model. It is noteworthy to recall that the two-
dimensional models which employ simply connected structural elements,
Figs. 1 and 3, reduce the number of equations by 50% with respect to
McCormick's model. Hence, even finer lattice systems could be solved
in conjunction with this direct elimination method. While several com-
putational aspects are briefly reviewed in McCormick's paper, the de-
tails of the method can be obtained from the references of Doolittle and

. (2,4) From McCormick's reported experience, the direct elimin-

Fox
ation method of solution is judged quite satisfactory for solving the stiff-
ness matrix equation which results from two-dimensional stress prob-
lems. Tezcan in a recent paper on the stiffness method for plane and
space structures used a Gaussian elimination process in a manner similar

{

to McCormick. 17) Tezcan gives a detailed outline of the computer pro-

gram of the solution process and references a paper by Galletley. (5)
Tezcan results parallel those of McCormick.

While the direct elimination procedures referenced above are con-
sidered to be satisfactory for two-dimensional stress problems, the use
of this method in three-dimensional stress problems would not be feas-
ible for any practical problem because of total band width requirements.
This fact can be readily appreciated by noting Fig. 14. The. most effic-

ient type of ardering of node movements would lead to a band width on

the order of 70 elements for a simple two by two by two lattice. There-
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fore, since storage and core requirements would quickly tax any current-
ly available digital computer, other methods for solving matrix equations

for three-dimensional problems are required.

Iterative Methods to Solve Stiffness Matrix Equation

In the above section the direct elimination scheme was shown to be a
satisfactory means for solving the stiffness matrix equations resulting
from two-dimensional stress problems. But the extension to three-dimen-
sional stress problems was seen to tax storage facilities; hence, other
methods of solution are required. The various iterative methods present-
ed in the literature employed only the non-zero elements in the coefficient
matrix S. If the procedure of '"diagonal subscripting'' the stiffness ele-
ments in an ordered stiffness matrixis used, the storage requirements
will be considerably reduced. (20) Incorporating this scheme with an es-
tablished iterative method, the solution of stiffness matrix equations des-
cribing three-dimensional lattice representation is considered possible.

An iterative method by Young, successive over-relaxation, is ref-

(22, 23) The successive

erenced as a possible meansfor solving Eq. 19.
over-relaxation method developed by Young is described by the iterative

relationship in Eq. 20.
x(1+1)=x(1)+w[Lx(i+l) +ux® 4o - x(l)] (20)

In terms of the matrices of the stiffness matrix equation, Eq. 19,

the various matrices in the above equations are defined as follows.

(i+1)

(i)

The vector x is the deflection vector for the (i+1) iteration.

The vector x is the deflection vector for the (i) iteration.
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The matrices L, U, e are most easily and clearly defined as fol-
lows. Let the stiffness matrix S be expressed as the sum of two ma-

trices D and C.
S = D-C

where D is the diagonal matrix 'A“’% and C is a square matrix
having zero elements on its main diagonal. The L and U matrices

are given by the matrix equation

L +U =Dl

where L is a lower triangular matrix and U is a uppertriangular ma-

trix. The vector e is defined by the matrix equation

The range of the iteration factor w is from 1 to 2. If w is
equal to 1, the successive over-relaxation method of Eq. 20 will be
equivalent to the Gauss-Sidell miethod.

Theoretical procedures are available for computing the optimum
value of w for special types of matrices. Kahan states that the succes-
sive over-relaxation method can be employed with satisfactory results for

(8)

matrices that are more general in nature ' '. Procedures for calculating

(19).

w are reviewed in a text by Varga Since these procedures for calcu-
lating w involve considerable computation in themselves and apply to par-

ticular types of matrices, the procedure of using judgment and exper-

ience in selecting an over-relaxation factor is used in many cases.
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If the node movements are consistently ordered and the technique
of diagonal subscripting is utilized during the generation of the stiff-
ness matrix S the successive over-relaxation method for solving the
stiffness matrix Eq. 19 can be programmed with efficiency and should
be relatively straight forward.

Another possible means of improving the capacity and efficiency
of the method is to make full use of the symmetric property of the
stiffness matrix S in the generation and solution of Eq. 19.

Another iterative method referenced as a possible method of so-
lution of Eq. 19 is the Peaceman-Rachford iterative method, an alter-

(13, 3)

nating-direction implicit iterative method. This method of so-

lution also involves obtaining iterative parameters. Methods for

(19)

approximating these parameters are reviewed by Varga.



CHAPTER FIVE

CONCLUSION

1. The lattice analogy technique is a powerful amlytical tool for
two-dimensional stress problems involving homogeneous linear mediums.

2. Computer times required for solutions of two-dimensional prob-
lems are quite acceptable for linear problems.

3. The preparation of input data for a lattice solution is a simple
and straightforward task.

4. The ability of the lattice analogy to consider random boundary
conditions and to approximate irregularly shaped bodies is a major advantage
of this technique.

5. The procedure developed for solving two-dimensional stress
problems involving nonhomogeneous linear mediums is useful and can
be employed to obtain approximate solutions to some problems; however,
additional study is needed on mesh-size requirements for nonhomogeneous
materials.

6. The procedure for solving two-dimensional stress problems
involving nonlinear mediums has been shown to converge to a correct
solution where there is little variation in material properties. However, |
additional study of the effects of material nonhomogeneity and nonuniform
stress distributions will be required before the method can become a
useful tool for solving nonlinear stress problems. The method of
solution is considered to be in an embryonic state of development at

the present time.
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7. The extension of the lattice techniques to the solution of three-
dimensional stress problems is relatively straightforward.. The tech-
nique can be made into a useful tool when the ability is developed to solve

large systems of linear simultaneous equations.




C HAPTER SIX

RECOMMENDATIONS

This chapter will enumerate the recommendations made in the pre-
ceding chapters. The recommendations are presented in the order in
which they should be acted upon in the continuation of this study.

1. A comprehensive evaluation of the various lattice and plate
analogies should be made. The most advantageous analogies should be
used in future studies.

2. Improvements in the capacity of the computer program, BODY 2,
should be made. This will mainly involve improving the ability to
solve larger systems of simultaneous equations. Several detailed

recommendations regarding these improvements are given in Chap.

4.

3. Studies should be made to understand the effects of material
nonhomogeneity and nonuniform stress distribution. In particular,
the effects of material inhomogeneity and stress nonuniformity on
fineness of grid requirements should be studied. Chapter 3 discusses
this problem.

4. A literature survey should be made to obtain stress-strain
expressions or data as depicted in Fig. 15b. For experimental veri-
fication of the method of solution, experimental stress-strain data
should be obtained for a convenient nonlinear material. Simple load-
ing tests on bodies of this material could be made and the results com-

pared with the analytical results obtained by lattice analogy solutions
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of the same problems.

5. Studies should be made to understand better the convergent
characteristics of the proposed method for solution of nonlinear stress
problems. Convergent criteria should be studied. Computational pro-
cedures to aid in convergence should be developed.

6. An awareness should be maintained in regard to the ability
to solve large systems of simultaneous equations. Whenever the
ability is achieved, the lattice analogy technique should be extended

to solve three-dimensional stress problems in linear mediums.



APPENDIX I
DETAILS OF A SIMPLY CONNECTED LATTICE ANALOGY

FOR TWO-DIMENSIONAL STRESS PROBLEMS
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APPENDIX 1

As stated in the text, the technique for solving stress problems in
a continuous body by a lattice analogy involves the generation and solu-
tion of a system of equations which describe the lattice representation
of the continuous body. Appendix I will define the stiffness coeffi-
cients used in the stiffness matrix equation, Eq. 19. The simply
connected lattice cells for plane stress and plane strain, Figs. 1 and
3 respectively, are geometrically identical, but the individual structural
elements A, A,, A, are defined differently. Hence, the stiffness
coefficients depend on the particular stress condition. Egquation 19
results from the writing of two equilibrium equations, Eq. 16, about
each node point. These stiffness coefficients in Eq. 16 will be defined
below. A computer program BODY 2 based on the lattice analogy will

be described following the definition of the various stiffness coefficients.

Stiffness Coefficients

The stiffness coefficients listed in Fig. 6 and used in Eq. 16 will
be defined in this section both for plane stress and plane strain
lattice cells. A convenient way to develop the definitions of the various
stiffness coefficients is shown in Fig. 23. The right top corner node
of the lattice cell is deflected by the aount A such that there is

the unit force F in the vertical member on the right side of the cell.
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FIGURE 23 DERIVATION OF STIFFNESS COEFFICIENTS FOR PLANE STRESS
OR PLANE STRAIN LATTICE CELLS, SIMPLY CONNECTED
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By frame analysis, the resulting forces in the outer diagonal members
due to the deflection A can be readily obtained. It is convenient to
define these forces in terms of their horizontal and vertical components
FP and FA. For the plane stress lattice cell, the resulting values of

FP and FA due to the translation A are

1 (1+v) AE
FA = 4 (1-v) a a

1 (3v-1) AE

4 (1-v) a A.

FP =

For the plane strain lattice cell, the resulting values of FP and

FA due to the translation A are

_ 1 AE
FA = 4(1-2V) a a
FP = (4v-1) AE AL

4(1-2v) a

Three general stiffness coefficients for the lattice cell are defined

using the above expression for horizontal and vertical forces resulting

from a deflection of a node point.

For the plane stress lattice cell the three stiffness coefficients

are

SA =
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3 (1+v) AE
SAFA = a(1-V) 2

_ {3v-1) AE
SAFP = 4(1-2V) a -

For the plane strain lattice cell the three stiffness coefficients are

sA - _AE
a
1 AE
SAFA = 255y 2
_ (4v-1) AE
SAFP =753 a

These three stiffness coefficients for each lattice cell are used to
define the various stiffness coefficients listed in Fig. 6 and used in the
two equilibrium equations, Eq. 16. For convenience Fig. 6 is redrawn here
with slight modifications, Fig. 24. The three stiffness coefficients SA,
SAFA ,SAFP completely describe the stiffness of each lattice cell. In
the development of the general stiffness matrix equation, Eq. 19, the two
equilibrium equations about each interior node were first written in terms
of these three stiffness coefficients. Because of the reoccurring combina-
tions of these stiffness coefficients, it was advantageous to define an
alternate set of stiffness coefficients, these being listed in Fig. 6 and used

in Eqs. 16a and 16b. These various stiffness coefficients are defined below.
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SSW = SAFA,,
SNW = SAFA,,

SNE = SAFA,,

SSE = SAFA,,
SW1 = SAFP_, + SAFP, + SA,, + SA,,
SW2 = -SAFP,, + SAFP,,
SW3 =-SAFP,, - SAFP,,
SNI = SAFP,, + SAFP,, + SA,, + SA,,
SN2 = SAFP,, - SAFP,,

SN3 = -SAFP,, - SAFP,,

SEl = SAFP,, + SAFP,, + SA,, + SA,,

SE2 = -SAFP,, + SAFP,,

SE3 = -SAFP, - SAFP,,

SSI = SAFP, + SAFP,, + SA,, + SA,,

SS2 = SAFP,, - SAFP,,

SS3 = -SAFP_, - SAFP,,

SCENI1 = -(SAFA,, + SAFA,, + SAFA,, + SAFA,, + SA,, + SA,,
+SA,, + SA,)

SCEN2 = SAFA_, - SAFA,, + SAFA,, - SAFA,,

Computer Program

The computer program described here is based on the simply connected
lattice cells shown in Figs. 1. and 3. The program BODY 2 will solve two-
dimensional stress problems in linear or nonlinear mediums. Since the
program is written in FORTRAN - 60 language, the comment cards in the
program itself plus a general flow diagram are considered a sufficient

description. The general flow diagram is shown in Fig. 25.



GENERAL FLOW DIAGRAM OF BODY 2 PROGRAM
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READ IN: NPROBS.ITER; ITRCEL(I,2,3,4,5 );IFNUM ;
IXNUM. ITRMOV (1,2,3,4,5); ITYPE.
BWIDTH ; BLENGTH ; CELLEN ; CELTICK ;
EASUMD ; VASUMD ; CLOSTOL.

COMPUTE : VARIOUS INDICES AND CONSTANTS USED THROUGHOUT PROGRAM

ﬁEAo IN IFSPC(I); FSPC(1). IXSPC(1).

Y
ﬁ’RINT OUT INPUT INFORMATION

SET . E(I) AND V(I) = EASUMD AND VASUMD FOR FIRST ITERATION

'

FIGURE 25 GENERAL FLOW DIAGRAM FOR BODY 2 PROGRAM
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= ENTER ITERATION LOOP )

!

COMPUTE | STIFFNESSES SA(I); SAFA(1); SAFP(I) FOR EACH
LATTICE CELL BASED ON E(I) AND V(I) VALUES

!

SET:. SET ALL S(I,J) ELEMENTS EQUAL TO ZERO
SET ALL F(I) ELEMENTS EQUAL TO FF(I)

!

GENERATE . STIFFNESS MATRIX S(I,J) AND THEN MODIFIED RESULTS IN
ORDER TO SPECIFY NODE MOVEMENTS IN BOUNDARY CONDITIONS

[SOLVE : MATRIX EQUATION S(I,J) X(I) = F(I) FOR NODE MOVEMENTS X(I) ]

COMPUTE . STATE OF STRAIN AT EACH LATTICE
CELL IN TERMS OF NODE MOVEMENTS

MONITORED STRAINS VALUES

{

COMPUTE. STATE OF STRESS AT EACH LATTICE CELL FROM STATE
OF STRESS VERSUS STATE OF STRAIN RELATIONSHIP

1

COMPUTE . PSEUDO ELASTIC CONSTANTS E(I)
AND V(I) FOR EACH LATTICE CELL

(PRINT'OUT ITERATION DATA: MONITORED NODE MOVEMENTS

TEST

CLOSURE
CLOSURE NOT /~ OF NODE CLOSURE

SATISFIED MOVEMENTS SATISFIED "\

NUMBER OF
ITERATIONS
USED

PRINT OUT OF OUTPUT DATA . NUMBER OF ITERATIONS AND IF
CLOSURE , NODE MOVEMENTS, STATES
OF STRESS AND STRAIN AT EACH
LATTICE CELL IN TERMS OF
PRINCIPAL AND X-Y VALUES

FLOW DIAGRAM FOR BODY 2 (CONT'D)




R A

LISTING OF BODY 2 PROGRAM
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.o SMITH ReEe PROGRAM BODY 2 GENERAL SIMPLY CONNECTED LATTICL MODEL
PROGRAM BODY2
DIMENSION S(234943)9X(234)sF(234)4FF(234)sFSPCI234)sIFSPC(254)
1 IXSPC(234) 9SA(96 )sSAFA(96 ) sSAFPI96 1sE(96 sV I(TF6 )
2 STRESS1(96 )sSTRESS2(96 )sSTRESSX{96 ) 9sSTRESSY(I6H )
3 STRESXY (96 ) +sSTRAIN1(96 )sSTRAINZ2(96 )+STRAINX(F6 'y
4 STRAINY (96 ) sSTRANXY (96 ) s THETA(96 )+ XPREVUS(5)sRUN(10)

COMMON s
Crm—= BODY 2 PROGRAM WILL SOLVE PROBLEMS OF PLANE STRESS OR PLANE STRAIN
C USING THE SIMPLY CONNECTED LATTICE CELLS OF HRENNIKOFF AND SMITH.
C THE MEDIUM MAY BE LINEAR OR NONLINEARe. MATERIAL PROPERTIES NECES-
C SARY FOR A SCLUTION ARE THE RELATIONSHIP OF THE STATES OF STRESS
C TO STATES OF STRAIN.
C~-NOTE~-1IT IS USUALLY NECESSARY TO ALTER DIMENSION STATEMENT FOR EACH
C PROBLEM
C
C NOTATIONS
C
C INPUT DATA
C
C NPROBS = NUMBER OF STRESS PROBLEMS TO BE SOLVEDe
C ITER = MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR CLOSURE
C IN NONLINEAR STRESS PROBLEMS.
C ITRCEL1--5 = MONITORED LATTICE CELLS DURING ITERATIONe. THE STATE
C OF STRAIN AT EACH MONITORED CELL IS PRINTED AFTER
C EACH ITERATION.
C IFNUM = TOTAL NUMBER OF SPECIFIED NODE MOVEMENTS OR NODE
C LOADSe.
C I XNUM = TOTAL NUMBER OF SPECIFIED NODE MOVEMENTSe
C ITRMOV1--5 = MONITORED NODE MOVEMENTS DURING ITERATIONe ALSO
C THESE MOVEMENTS ARE USED IN CLOSURE TESTe
C ITYPE = SPECIFICATICN OF STRESS CONDITION--~FOR PLANE STRESS
C ITYPE = 0 FOR PLANE STRAIN ITYPE = NONZEROs
C BWIDTH = WIDTH OF RECTANGULAR BODY.
C BLENGTH = LENGTH OF RECTANGULAR BODY.
C CELLEN = SIDE DIMENSION OF THE LATTICE CELL.
C CELTICK = THICKNESS OF THE LATTICE CELL.
C EASUMD = THE ELASTIC CONSTANT E ASSUMED FOR THE FIRST ITER-
C ATION.
C VASUMD = THE ELASTIC CONSTANT V ASSUMED FOR THE FIRST ITER-
C ATION.
C CLOSTOL = CLOSURE TORERANCE FOR NODE MOVEMENTS ITRMOVI1=--=5.
C IFSPC = INDEX OF SPECIFIED NODE MOVEMENTS OR LOADSe. INDEXING
C SHOULD BE RIGHTLY ORDERED THAT IS 2467 NOT 2746
C FSPC(ISPC) = VALUES OF SPECIFIED NODE LOADS OR MOVEMEMTS.
C IXSPC = INDEX OF SPECIFIED NODE MOVEMENTSe.
C NOTE~=~NUMBER OF TFSPC OR FSPC = IFNUM,.
C NUMBER OF IXSPC = IXNUMe
C
C ADDITIONAL NOTATIONS
C
C NODEWID = NUMBER OF NODE POINTS IN THE WIDTH OF THE BODY
C NODEWID = (BWIDTH/7CELLEN) +1e.
C NODELEN = NUMBER OF NODE POINTS IN THE LENGTH OF THE BODY
C NODELEN = (BLENGTH/CELLEN) +1.
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NEQUAS
NTWID

SA(I)
SAFA(L)
SAFP (1)
S(IsJ)
X(I)
F(I)
E(I)

vil)

STRESS1

STRESSZ2(1)

THETAC(I

STRAIN1(I)
STRAINZ2(I)

1]

H

(1)

noumu

)

STRESSX(I)
STRESSY(1I)

STRESXY(1I)

[}

STRAINX(I)
STRAINY(TI)
STRANXY (1)
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NUMBER OF EQUATIONS IN THE MATRIX EQUATION SX=Fe.
NEQUAS = NODEWID*NODELEN*2

TOTAL WIDTH OF BAND OF NONZERO ELEMENTS IN THE
STIFFNESS MATRIX Se NTWID= 4*NODEWID+ 7.

THE THREE MAIN STIFFNESS COEFFICIENTS FOR EACH
CELL(I)e USED TO DEFINE THE VARIOUS STIFFNESS
COEFFICIENTS IN THE STIFFNESS MATRIX S(I.J)
STIFFNESS ELEMENTS IN THE STIFFNESS MATRIX Se
ELEMENTS IN THE MOVEMENT VECTOR Xe

ELEMENTS IN THE LOAD VECTOR Fo.

THE ELASTIC CONSTANT E —---ASSUMED FOR FIRST ITERATION
--~-=-PSEUDO VALUE FOR EACH CELL ON EACH ITERATION.
THE ELASTIC CONSTANT V--- ASSUMED FOR FIRST ITERATION

-——— PSEUDO VALUE FOR EACH CELL ON EACH ITERATION.
NORMAL MAXIMUM PRINCIPAL STRESS FOR CELL(I).

NORMAL MINIMUM PRINCIPAL STRESS FOR CELL(I)e

ANGLE FROM THE STRESS1 DIRECTION TO THE X-DIRECTION
FOR CELL(I)e CCW IS +

MAXIMUM EXTENSION STRAIN FOR CELL(I)

MINIMUM EXTENSION STRAIN FOR CELL(I)

STRESS AND STRAIN COMPONENTS IN THE X-Y DIRECTIONS

FOR CELL(I)e
STRESXY AND STRANXY ARE SHEAR COMPONENTS.

OUTPUT INFORMATION

MONITORED NODE MOVEMENTS =X(ITRMOV1---5)

MONITORED STRAINS

=STRAINI(ITRCEL1~-==5)sSTRAINZ2(ITRCEL1~-=-5)
THETA(ITRCEL1---5)

FINAL SOLUTION OF PROBLEM CONSISTING OF THE BELOW INFORMATION
NODE MOVEMENTS X(1)e
STATE OF STRAIN AT EACH LATTICE CELL X-Y COMPONENTS AND PRINCIPAL

STRAINS.

STATE OF STRESS AT EACH LATTICE CELL X-Y COMPONENTS AND PRINCIPAL
STRESSES.

FORMAT (1H1)

FORMAT (10A8 )

FORMAT (4(11051PE10e3))

FORMAT (1615)

FORMAT (1PB8E10e3)

FORMAT (1Xs10A8)

FORMAT (/7 20H INPUT DATA//)

FORMAT 41H MAXIMUM NUMBER OF ITERATIONS = I5 /)
FORMAT 31H MONITORED CELLS ARE 515 /)

FORMAT ( 46H NUMBER OF F(I) ELEMENTS SPECIFIED = 15/)
FORMAT ( 46H NUMBER OF NODE MOVEMENTS SPECIFIED = I5/7)
FORMAT ( 38H WIDTH OF RECTANGULAR BODY = 1PE10e3/)
FORMAT ( 39H LENGTH OF RECTANGULAR BODY = 1PE10e3/)
FORMAT 43H SIDE DIMENSION OF LATTICE CELL = 1PE10e3/)
FORMAT ( 30H THICKNESS OF BODY = 1PE10e3/ )

FORMAT ( 42H MODULUS OF ELASTICITY ASSUMED = 1PE10.3/)



THETA
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POISSONS RATIO AéSUMED = 1PE10+3/ )
PRINT OUT OF SPECIFIED LOADS OR MOVEMENTS

LOAD MOVEMENT

MONITORED NODE MOVEMENTS ARE 5157)
ITERATION DATA )
ITERATION NUMBER I5 //)

TABLE OF MONITORED MOVEMENTS

VALUE )

/)
MOVEMENT

TABLE OF MONITORED STRAINS
MAXe STRAIN

/)
CELL NUMBER MIN.

)

(13Xs1537Xs1PE154895X91PE154845X9s1PE1548)

CLOSURE TOLERANCE FOR MONITORED NODE MOVEM

OUTPUT DATA //)

30 FORMAT ( 35H
31 FORMAT (// 60H
1AT NODES )
32 FORMAT (/ 58H
1 VALUE /7))
33 FORMAT (11X9s15934Xs1PE10e3)
34 FORMAT (33Xs15912X91PE1Qe3)
35 FORMAT ( 41H
36 FORMAT (/7 25H
37 FORMAT (// 26H
38 FORMAT ( 39H
39 FORMAT ( 36H
40 FORMAT (13XsI597X91PE1548)
41 FORMAT (/7 37H
42 FORMAT ( 76H
1STRAIN
43 FORMAT
47 FORMAT ( 59H
1ENTS = 1PE10.3 /)
500 FORMAT (/7 21H
501 FORMAT ( 63H

1ION NUMBER I5 /)

NWIDTH

SOLUTION CLOSED WITHIN TOLERANCE AT ITERAT

502 FORMAT ( 66H SOLUTION DID NOT CLOSE AFTER SPECIFIED ITE
1RATION NUMBER I5 /)
503 FORMAT (/ 33H TABLE OF NODE MOVEMENTS /)
504 FORMAT (//52H TABLE FOR THE STATE OF STRAIN AT EACH CELL
1 /)
505 FORMAT (//52H TABLE FOR THE STATE OF STRESS AT EACH CELL
1 7)
506 FORMAT ( 76H CELL NUMBER MAXe STRESS MINe.
15TRESS THETA )
507 FORMAT (// 64H TABLE FOR STRAINS IN THE X-Y DIRECTICONS FO
1R EACH CELL /)
508 FORMAT ¢ T7H CELL NUMBER STRAINX STR
1AINY STRANXY )
509 FORMAT (// 65H TABLE FOR STRESSES IN THE X-Y DIRECTIONS F
10R EACH CELL /)
510 FORMAT ( T7TH CELL NUMBER STRESSX STR
1ESSY STRESXY )
CALL TIME ( 1HP )
READ 4,4NPROBS
DO 9999 NPROB = 1sNPROBS
READ 2» (RUN(I)s I 1, 10)
READ 4o ITERs ITRCEL1s ITRCEL2s ITRCEL3s ITRCEL&4s ITRCELS5s IFNUM,
1 IXNUM
READ 4s ITRMOV1sITRMOV2,s ITRMOV3s ITRMOV&4s ITRMOVS5s ITYPE
READ 55 BWIDTH, BLENGTHs CELLEN, CELTICK, EASUMDs VASUMD, CLOSTOL
————— COMPUTATION OF VARIOUS INDEXS TO BE USED THROUGHOUT PROGRAMe
BWID = {BWIDTH/CELLEN) + 1.0
BLEN = {(BLENGTH/CELLEN) + 1.0
NODEWID = BWID
NODELEN = BLEN
NEQUAS = NODEWID*NODELEN#%*2
NTWID = NODEWID¥*4 + 7

(NTWID=1)/2
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MD = NWIDTH + 1

NQMWID = NEQUAS - NWIDTH

NCELLS = (NODEWID -~ 1)®(NODELEN - 1)
NLENM1 = (NODELEN - 1)

NWIDM1 = (NODEWID =~ 1)

DENOM = CELLEN%*2,0

NWIDP1 = NODEWID + 1

Nw2 = 2#NODEWID

READ 3s (IFSPC{I)s FSPC(I)s I = 1,IFNUM)
READ 4s (IXSPC(I)s I = 1laIXNUM)
————— PRINT OUT OF INPUT INFORMATION.
PRINT 1
PRINT 69 (RUN(I)s1=1910)
PRINT 20
PRINT 21, ITER
PRINT 22y ITRCEL1sITRCELZ2sITRCEL3sITRCEL4,ITRCELS
PRINT 35y ITRMOV1s+1TRMOV2,ITRMOV3,ITRMOV4sITRMOVS
PRINT 23s IFNUM
PRINT 24s IXNUM
PRINT 25+ BWIDTH
PRINT 26s BLENGTH
PRINT 27, CELLEN
PRINT 28s CELTICK
PRINT 29s EASUMD
PRINT 30s VASUMD
PRINT 47, CLOSTOL
DO 556 1=1oNEQUAS
FF(I) = 0.0
556 CONTINUE
Jd =1
————— SETTING LOAD VECTOR F(I) TO SPECIFIED CONDITIONS AND PRINTING OUT
NODE MOVEMENTS AND LOADS WHICH WERE SPECIFIED.
DO 550 I = 1oIFNUM

IFCIXSPC(J) = IFSPC(I)) 55445554554
554 IFF = IFSPC{I)
FF(IFF) = ~FSPC(I)
GO TO 550
555 IXX = IXSPC(J)
FF(IXX) = FSPC(I)
J = J+l
550 CONTINUE
PRINT 31
PRINT 32
J =1
DO 551 I = 1yIFNUM
IF (IXSPC(J) — IFSPC(I)) 55245534552
552 IFF = IFSPC(I)
FFF = -FF{IFF)
PRINT 33, IFFsFFF
GO 70O 551
553 IXX = IXSPC(J)
PRINT 34, IXXs FF{IXX)
Jd = J + 1 ‘

551 CONTINUE
CALL TIME (¢ 1HP )
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————— SETTING THE ELASTIC CONSTANTS E AND vV TO THE ASSUMED VALUES
EASUMD AND VASUMD FOR FIRST ITERATION
DO 201 I = 1sNCELLS
EASUMD
VASUMD

ECI)
viD)
201 CONTINUE
KOUNTER = 0
————— BEGINNING OF ITERATION CYCLE
DO 999 IT = 1,ITER
I TERNUM = I7T
————— COMPUTION OF THE THREE MAIN STIFFNESS COEFFICIENTS FOR EACH
LATTICE CELL

CLT = CELLEN*CELTICK
————— LOGIC TO SPECIFY PLANE STRESS OR PLANE STRAIN PROBLEM ITYPE = 0
FOR PLANE STRESS ITYPE = ANY INTERGER FOR PLANE STRAIN

IF (ITYPE) 19651984196
————— DO LOOP 197 FOR PLANE STRAIN PROBLEMS

196 DO 197 I = 1sNCELLS
A = CLT/((1leO+V(I))%2.0)
FA = ({1e0)/(1e0~2e0%V(1)))*0e25
FP = ((4e0%¥V(])=1e0)/(1e0-240%V(I)))*0e25
SA(I) = (A¥E(I))/CELLEN
SAFA(I) = FA%SA(I])
SAFP(I) = FP#SA(I)

197 CONTINUE
GO TO 199

----- DO LOOP 200 FOR PLANE STRESS PROBLEM

198 DO 200 I = 14NCELLS
A = CLT/((1e0 + VI{I))*2.0)
FA = ((V(I)+1e0)/(1e0-V(I)))*0e25
FP = ((3e0%V(1})=1e0)/(1e0-V(I)))*0e25
SA(L] = (A*E(I})/CELLEN
SAFA(L) = FA* SA{I)
SAFP(I) = FP * SA(I)

200 CONTINUE
ﬂﬂﬂﬂﬂ GENERATION OF THE STIFFNESS MATRIX S AND THE LOAD VECTOR F

199 DO 202 I = 1sNEQUAS
DO 202 J = 1oNTWID
S(Isd) = 060

202 CONTINUE
DO 203 I = 1sNEQUAS
F(I) = FF(I)
203 CONTINUE
=====COMPUTING STIFFNESS ELEMENTS FOR FIRST NODE --THAT IS FIRST CORNER

NODE

N =1

Il = 2%N = 1
12 = I11+1
SSW = 0«0
SNW = Q.0
SSE = Qa0
SW1 = Q0
SwW2 = 0«0
SW3 = 00
Ss1 = 00



5582
SS3
SNE
SN1
SN2
SN3
SE1
SE2
SE3
SCEN1
SCENZ2
CALL

Il
I2
SStE
SKNE
SN1
SN2
SN3
SE1l
SE2
SE3
SS1
552
5§83
SCENI1
1
SCENZ2
CALL
1

[ I 1 O T O N (O IO T N T IO 1

SMATRIX
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0«0

0.0

SAFA(N)

SAFP(N)+SA(N)
=SAFP(N)
~SAFP(N]

SAFP (N)+SA(N)
=SAFP(N)
-SAFP(N)
=(SAFA(N)+SA(N))
~SAFA(N)}
(SSWsSNWeSNEsSSEaSW19sSW29SW39SN19SN29SN39SEL19SE29SE3

955195529553 9SCEN19SCEN29s11512sMDeNW2)
===== COMPUTING STIFFNESS ELEMENTS FOR NODES ON FIRST COLUMN EXCLUDING
THE CORNER NODES
DO 204

wouou o

| {20 T T { O S I { | B

SMATRIX

N = 29 NWIDM1
2#¥N = 1
I1+1
SAFA{N-1)
SAFA (N}
SAFPINY+SA(N)
-SAFP(N)
~SAFP(N)
SAFP(N)+SAFP (N-1)+SA(N}+SA(N-1)
=SAFP(N)+SAFP{N=1)
=SAFP(N)=SAFP (N-1)
SAFP(N-1)1+SA(N~1)
~SAFP(N-1)
=SAFP{N-1)

~{SAFA(N)+SAFA(N-1}

+ SA(NI+ SA(N=1)}
~SAFA(N}+SAFA(N=-1)
{SSWaSNWs SNEsSSEsSW1aSW2eSW3eSN1sSN2sSN3sSE1eSE29S5SE3

955195529553 3SCEN1sSCEN2s11912sMDsNW2)

204 CONTINUE
-wwe—COMPUTING STIFFNESS ELEMENTS FOR TOP NODE OF FIRST COLUMN

N

Il

12
SNE
SN1
SN2
SN3
SSE
SE1l
Stz
SE3
Ss1
552
SS83
SCEN1
SCENZ2
CALL

[ B T | R T U I D 1)

W

SMATRIX

NODEWID
2¥N - 1
I1+1
0.0
0.0
00
0.0
SAFA(N=-1)
SAFP({N~1)+SA(N~1)
SAFP{N--1)
—SAFP(N-1)
SAFP(N-1)+SA(N-1}
~SAFPIN=1}
=SAFP(N=1)

={SAFA{N=1)+SA(N=1))

SAFA(N~1)
(SSWsSNWeSNEs SSEsSW19SW29SW3sSN19SN29SN3sSE19SEZSES

9551955295533 SCEN1sSCEN29I11s129sMDeNW2)
—e—w=COMPUTING STIFFNESS ELEMENTS FOR NODE OF INTERIOR COLUMNS



NBOT
INW
JEY
INE
ISE

BOTTOM NODE

DO 205

N
Il
12
SSE
SSW
ssl
SS2
SS3
SNW
SNE
SW1
SW2
SW3
SN1
SN2
SN3
SE1l
SE2
SE3
SCEN1

SCENZ2

nonw o

L € | O T ¥ S O - N VI 1 T { N I | O IO O 14

CALL SMATRIX

NBOTP1
NTOPM1
DO 206

I1

I2

SSW
SNW
SNE
SSE
SwW1
SW2
SW3
SN1
SN2
SN3
SE1
SE2
SE3
SS51
552
SS3
SCEN1

{1 T ¢ S T T | O | T N £ O A { O T I A VS 1 N | I 1 = | B 1

NWIDP1
NODEWID
NODEWID + 1
1

2

INTERIOR COLUMNS
NCOLUMN = 2,NLENM1

NBOT
2%N-1
I1+1

SAFA(N=INW)

SAFA(N-INE)
SAFPIN-INW)+SA{N-INW)
-SAFP (N-INW)

~SAFP (N=INW)
SAFP(N—-INW)+SAFP(N-INE)+SA(N-INW)+SA(N-INE)
SAFP (N-INW)—-SAFP(N-INE)
~SAFP(N-INW)—=SAFP(N-INE)
SAFP (N-INE)+SA(N-INE)
-~SAFP(N-INE)

~SAFP (N-INE)

—~(SAFA(N-INW)+SAFA(N-INE)

+ SA(N-INW)+ SA(N-INE))
SAFA(N-INW)-SAFA(N-INE)

100

(SSWeSNWeSNEsSSEsSW19aSW29SW3sSN19SN2sSN39SE19SE29SE3
9551955295539 SCEN19SCEN2s1I1412sMDyNW2)
INTERIOR NODES INTERIOR COLUMNS

NBOT + 1
NBOT + NODEWID - 2
= NBOTP14NTOPM1

2%N~1

11+1

SAFA(N-ISW)

SAFA(N-INW)

SAFA(N-INE)

SAFA(N-ISE)

SAFP(N—INW) +SAFP(N=ISW)+SA(N-INW)+SA(N-ISW)
-SAFP(N=-INW)+SAFP(N-ISW)
~SAFP(N-INW)-SAFP(N-ISW)

SAFP (N—INW}+SAFP(N-INE)+SA(N-INW)+SA(N~INE)

SAFP (N—INW)—-SAFP(N-INE)
~SAFP (N-INW)—-SAFP(N-INE)

SAFP(N=INE)+SAFP(N-ISE)+SA(N-INE)+SA(N-ISE)
~SAFP (N-INE)+SAFP(N-ISE)
—SAFP(N-INE)—-SAFP(N-ISE)

SAFP{N=ISW)+SAFP(N-ISE)+SA(N-ISW)}+SA(N-ISE)

SAFP(N-ISW)-SAFP(N-ISE)
~SAFP{N-1SW)-SAFP(N-ISE)

={SAFA(N=INW)+SAFA(N-INE)+SAFA(N-ISE)+SAFA(N-ISW)

+ SA(N-INW)+ SA(N-INE)+ SA(N-ISE)+ SA(N-ISW))
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1
206

1

1

e

SCEN2

=

101

SAFA(N-INW}-SAFA(N-INE)+SAFA(N-ISE)-SAFA(N~-ISW)

CALL SMATRIX (SSWseSNWsSNEs»SSEsSW1sSW29SW3sSN19SN2sSN33sSE19SE29SE3

CONTINUE

»SS

1955295539 SCEN1sSCEN2s11+125MDsNW2)

TOP NODE INTERIOR COLUMNS

N
Il
12
SNW
SNE
SN1
SN2
SN3
SSW
SSE
SW1
SW2
SW3
SE1l
SE2
SE3
SS1
582
S53
SCEN1

SCENZ

LS ¢ T L {1 ¥ | (T T I ([ I I T TR

CALL SMATRIX

NBOT

INW

INE

ISwW

ISE
CONTINUE

9SS

LI TR I 1}

NBOT + NWIDM1
2%N-1

I1+1

0.0

Oe
Qe
O.

OO

O0e0
SAFA(N-1SW)
SAFA(N-ISE)
SAFP(N-ISW)+SA(N-ISW)
SAFP{N-ISW)
-SAFP (N-1SW)
SAFP(N~ISE)+SA(N-ISE)
SAFP{(N=1SE)
=SAFP(N-1ISE)
SAFP{(N~-ISW)+SAFP (N-ISE)+SA(N-ISW)+SA(N=ISE)
SAFP(N-ISW)~SAFP(N-ISE)
—-SAFP (N=-ISW)-SAFP (N-ISE)
—{SAFA{N-ISW)+SAFA(N-ISE)
+ SA{N=ISW)+ SA(N=-ISE})
~SAFA{N-ISW)+SAFA(N-ISE)
(SSWeSNWeSNEsSSEsSW1sSW2sSW39SN1sSN29SN39sSEL1sSE29SE3
19552955343 SCEN19ySCENZ29I19125sMDeNW2)
NBOT + NODEWID
INW +
INE +
ISW +
ISE +

P e

COMPUTING STIFFNESS ELEMENTS FOR BOTTOM CORNER NODE LAST COLUMN

N
Il
I2
S5W
SSE
SNE
S51
552
SS3
SE1l
SE2
SE3
SNW
SW1
SwW2
SW3
SN1
SN2
SN3

L LJN N I ¢ T 1 A 1 | T {1 JO Y { A < O O £ I (]

NBOT
2¥N - 1
I1+1
0.0
0e0
0«0
Oe0
0.0

[eNeoNe
e NeoNel

[ ]
L]
00
SAFA{N=INW)
SAFP(N—-INW)+SA(N-INW)
=SAFP (N~=INW)
~SAFP(N-=INW)
SAFP(N=INW}+SA(N—INW)

SAFP (N-INW)
~SAFP(N=INW)



1

1
207

209

102

SCEN1 =—(SAFA(N-TINW)+SA(N-INW))
SCEN2 = SAFA(N-INW)
CALL SMATRIX (SSWsSNWsSNEs»SSEsSW1sSW29SW3sSN19sSN29SN3sSE19»SE29SE3

9551955295533 SCEN1sSCEN2s11s12sMDsNW2)
M =N+ 1
NLASTM1 = NODEWID*NODELEN - 1

COMPUTING STIFFNESS ELEMENTS FOR INTERIOR NODES LAST COLUMN
DO 207 N = MsNLASTM1

I1 = 2%N - 1

12 = 11+1

SSW = SAFA(N-ISW)

SNW =  SAFA(N-INW)

Swl = SAFP({N-INW)+SAFP(N-ISW)+SA(N-INW)+SA(N-ISW)

Sw2 = —~SAFP{N~INW)+SAFP(N-ISW)

SW3 = —~SAFP{(N-INW)-SAFP({N-ISW)

SN1 = SAFP{N~INW)+SA(N-INW)

SN2 = SAFP({N-=INW)

SN3 = ~SAFP(N=1INW)

551 =  SAFP(N-ISW)+SA(N-ISW)

§S52 = SAFP{N-ISW)

5583 = ~SAFP(N=1SW)

SCEN1 == {SAFA(N-INW) +SAFA(N-ISW)
+ SA(N-INW)+ SA(N-ISW))

SCENZ = SAFA({N-INW)-SAFA(N-ISW)

CALL SMATRIX (SSWsSNWsSNEsSSEsSW1sSW29SW39SN1sSN29SN33SE19sSE24SE3

955195529553 9SCEN1sSCEN29115129MDeNW2)
CONTINUE
COMPUTING STIFFNESS ELEMENTS FOR LAST NODE POINT
N = NODEWIDX*NODELEN
11 =  2¥N=1
12 = J1+41
SNwW = 0.0
5N1 = 060
SN2 = QeO
SN3 = Qa0
SSW = SAFA(N-ISW)
SW1 = SAFP(N-ISW)+SA(N-ISW)
SW2 = SAFP({N-1ISW)
SW3 = =SAFP{N-1I5W)
$S1 =  SAFP(N=ISW)+SA(N-ISW)
552 = SAFP(N-1SW)
583 = =SAFP({N=1SW)
SCEN1 == (SAFA{N~ISW)+SA(N=ISW))
SCENZ2 = =SAFA(N=ISW)

CALL SMATRIX (SSWsSNWsSNEsSSEsSW1aSW29SW39SN1sSN29SN39SE1sSE24SE3
955195529553 3SCEN19SCEN2sI1412sMDsNW2)
END OF THE GENERATION OF THE GENERAL STIFFNESS MATRIX Se BELOW

DO LOGP SETS THE MAIN DIAGONAL ELEMENT S(IsMD) = 140 AND ALL OTHER
ELEMENTS St(lsJ)= 00 ON ROW I FOR EACH SPECIFIED NODE MOVEMENT
X{T3e

DO 208 I = 1sIXNUM
IXX = IXSPC(I)

DO 209 J = 1sNTWID
S{IXXsJ) = 00
CONTINUE
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103

106

105

108

S(IXXsMD) = 1.0
CONTINUE
CALL TIME ( 1HP )

BELOW ROUTINE SOLVES THE STIFFNESS MATRIX EQUATION SX=F BY

103

AN ELIMINATION PROCESS WHICH DOES NOT COMPUTE OUTSIDE ORIGINAL

DIAGONAL BAND OF NON ZERO ELEMENTSe
DO 103 I = 1s NQMWID

IP1 = 1T + 1
IPN = I + NWIDTH
N = 0
DO 103 L = IPls IPN
N =N+ 1
M = MD - N
IF ( S(LsM) ) 104s 103, 104
XM = =S(LsM)/S(1sMD)
FoL) = F(L) + XM % F(I)
MN = M + NWIDTH
LL =L -1
DO 103 MM = My, MN
S{LsMM) = S(LsMM) + XM * S(IsMM+LL)
CONTINUE
Il = NEQUAS - NWIDTH + 1
NEQ = NEQUAS -1
NN = 0
DO 105 I = I1s NEQ
IP1 =1+ 1
N = 0
NN = NN + 1
DO 1065 L = IP1s NEQUAS
N = N+ 1
M = MD - N
IF ( S(LsM) ) 106 105, 106
XM = =S{LsM)/S(IsMD)
F{L) = F(L) + XM * F(I)
MN = M + NWIDTH = NN
LL = L =1
DO 105 MM = M, MN
S(LsMM) = S(LsMM) + XM * S(I4MM+LL)
CONTINUE
IA = NEQUAS + MD
DO 108 I = MDs NEQUAS
B = JA -1
iBM1 =1IB -1
IBMN = IB - NWIDTH
MB = =1
DO 108 L = IBMNs IBM1
MB = MB + 1
MBB = NTWID = MB
XM = = S{(LsMBB)/S(IBsMD)
FoL = F(L) + XM * F(IB)
CONTINUE
IA = NWIDTH + 2
N = =1
DO 109 I = 29 NWIDTH
IB = JA = 1
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I1BM1 = I8 -1
N =N+ 1
DO 109 L = 1s IBM1
NN = NTWID - N - L
XM = = S(LsNN)/S(IBsMD)
S(LsNN) = S(LsNN) + XM * S(IBsMD)
FL) = F(L) + XM * F(IB)
CONTINUE
DO 110 I = 1s NEQUAS
X{(I) = F(I)/S(IsMD)
CONTINUE

CALL TIME ( 1HP )

————— COMPUTION OF THE STATE OF STRAIN AT EACH LATTICE CELL(I)

1

1

310
312
321
313

314

311

301

303

302
304

320

305
299

ICLBOT =1
ICLTOP = NWIDM1
JJ = 0
DO 300 I = 1sNLENMI1
J = JJ - 1
DO 299 N = ICLBOT, ICLTOP
J = J + 2
STRAINX(N) = (X(J+NW2+2)}+ X(J+NW2)-X(J)—-X(J+2))/DENOM
STRAINY(N) = (X(J+NW2+3)= X(J+NW2+1)=-X(J+1)+X(J+3)) /DENOM
STRANXY(N) = (X(J+NW2+2)+X(J+NW2+3 ) =X {(J+NW2)+X(J+NW2+1)-X(J)
=X ({J+1)+X(J+2)-X(J+3))/DENOM
EC = (STRAINX(N) + STRAINY(N))/2.0
ER = (({{STRAINX(N)~STRAINY(N))*%2 )/4.0) +
((STRANXY (N)*%2 ) /4,0))#%0e5
STRAINL(N) = EC + ER
STRAINZ2(N) = EC ~ ER

IF (STRANXY(N)) 31243105312
IF(STRAINX(N)-STRAINY(N)) 311+320,311
IF (STRAINX(N)-STRAINY(N})) 311+321,311
IF (STRANXY(N)) 313+311+314

THETA(N) = =450
GO TO 299
THETA(N) = 4540
GO TO 299
THETAZ = (ATANF (STRANXY(N)/ (STRAINX{(N)=STRAINY(N)}))
THETAZ = THETA2%57,2957795

IF (STRANXY(N))301+3015302
IF (STRAINX(N)=-STRAINY(N)) 30342999302

THETAZ2 = THETA2 = 18040
GO TO 305
IF (STRAINX(N)-STRAINY(N)) 30492999305
THETAZ2 = THETAZ + 180460
GO TO 305
THETAZ2 = 0,0
THETA(N) = THETAZ2/2.0
CONTINUE
JJ = JJ + NW2
ICLBOT = ICLBOT + NWIDM1
ICLTOP = ICLTOP + NWIDM]
CONTINUE

PRINT OUT OF ITERATION DATA
KOUNTER = KOUNTER + 1
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352

353
354

447
446

448

445

444

442
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IF (KOUNTER - 2) 3505 3534 353

IF (IT - 1) 35193519352
PRINT 1
PRINT 6s (RUN(I)s I = 1510)
PRINT 36
GO TO 354
PRINT 1
GO TO 354
KOUNTER = 0

PRINT 37s IT

PRINT 38

PRINT 39

PRINT 40, ITRMOV1s X{ITRMOV1)

PRINT 40, ITRMOVZ2s X(ITRMOV2)

PRINT 40, ITRMOV3,s X{ITRMOV3)

PRINT 40s ITRMOV4,s X(ITRMOV4)

PRINT 40, ITRMOV5s X{(ITRMOV5)

PRINT 41

PRINT 42

PRINT 43, ITRCEL1s STRAINI(ITRCEL1)s STRAINZ2(ITRCEL1)s THETA(ITRCE
1L1)

PRINT 43+ ITRCEL2s STRAIN1(ITRCEL2)s STRAINZ2(ITRCEL2)s THETA(ITRCEL
1L2)

PRINT 43, ITRCEL3s STRAIN1(ITRCEL3)s STRAINZ(ITRCEL3)s THETA(ITRCE
1L3)

PRINT 43, ITRCEL4s STRAINI(ITRCEL4)s STRAINZ2(ITRCEL4)s THETA(ITRCE

iL4)

PRINT 43, ITRCEL5s STRAINL(ITRCELS5)s STRAINZ(ITRCELS5)s THETA(ITRCE
1L5)

-BELOW ROUTINE CALCULATES THE STATE OF STRESS AT EACH LATTICE CELL
WHICH CORRESPONDS TO THE STATE OF STRAINS COMPUTED ABOVLe

DO 450 1 = 1oNCELLS

~ANALYTICAL EXPRESSION OF THE MECHANICAL PROPERTIES ARE TO BE
WRITTEN HERE FOR THE PARTICULAR MEDIUM UNDER ANALYSIS.

THAT IS STRESS1= FUNCTION(STRAIN1sSTRAINZ2)AND

STRESS2= FUNCTION(STRAIN1+STRAINZ) .

STRESS1(I) = 32967032,90%(STRAIN1(I) + 0e30%STRAIN2(I))
STRESS2(I) = 32967032.90*%(STRAIN2(I) + O0e30%STRAIN1(I))
-BELOW ROUTINE COMPUTE THE PSEUDO ELASTIC CONSTANTS E AND Vv FOR
EACH CELL

ADDITIONAL LOGIC NEEDED FOR STRAIN1=STRAIN2 AS FOLLOWS [IF(ABSF
(STRAINLI{I)=STRAINZ2(I)))447+4484447
IF (STRAIN1(I))} 44544464445

BB = STRESS1(I)/STRAIN2(I)

AA = STRESS2(I)/STRAIN2(I)

GO TO 444

GO TO 444

BB = (STRESS2(I)=STRAIN2(I)*STRESSI(I)/STRAIN1C(I) )/
1 (STRAIN1(I)-(STRAIN2(I)*%2)/STRAINL1{I)}

AA = (STRESSL1(I)-STRAIN2(I1)*BB)/STRAIN1(I)

===== LOGIC TO DETERMINE IF PLANE STRESS OR PLANE STRAIN FOR COMPUTING

VALUES OF E AND V
IFC(ITYPE) 44244439442

————— E AND V BELOW ARE FOR PLANE STRAIN PROBLEMS

Vil = {(BB)/(AA + BB)
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E{I) = (AA¥(1e0+V(INI¥(1e0-2.0%VI(I)))/(1e0-VII))
GO T0O 450
————— E AND v BELOW ARE FOR PLANE STRESS PROBLEMS
Vil = BB/AA
E(I) = AA¥(1le0-vV(I1)%%2)
CONTINUE

————— BELOW ROUTINE COMPUTES THE STRESS COMPONENTS IN THE X-Y DIRECTICNS

—— . —

456

459

460

461

462

FOR EACH LATTICE CELL.
DO 449 1 = 1, NCELLS

SCENTER (STRESS1(I)+STRESS2(1))/240
SRADIUS (STRESS1(I)~-STRESS2(11)/260
THETAZ 0«03490658504*%THETA(I)

STRESSX(I)
STRESSY(I)
STRESXY (I}
CONTINUE
CALL TIME ( 1HP )
CLOSURE TOLERANCE CHECK
IF (ABSF(X(ITRMOV1)~-XPREVUS(
IF  (ABSF{X({ITRMOVZ)~-XPREVUS({
IF  (ABSF{X{ITRMOV3)-XPREVUSI
IF  (ABSF{X(ITRMOV4)~-XPREVUS(
IF  (ABSF(X(ITRMOVS5)-XPREVUS(
XPREVUS( ) = X(ITRMOV1)
XPREVUSI( X{ITRMOV2)
XPREVUS( X{(ITRMOV3)
XPREVUS|( X(ITRMOV4)
XPREVUS( X{ITRMOVS)
CONTINUE
PRINT OUT OF FINAL SOLUTION
PRINT 1
PRINT 69 (RUN(I)sI=1s10)
PRINT 500
PRINT 502, ITERNUM
GO TO 459
PRINT 1
PRINT 6 (RUN(I)sI=1s10)
PRINT 500
PRINT 501s ITERNUM
PRINT 503
PRINT 39

DO 460 I=1sNEQUAS
PRINT 40, Is X(I)
CONTINUE
PRINT 504
PRINT 42

DO 461 I=1sNCELLS
PRINT 43y Is STRAIN1(I)s STRAIN2(I)s THETAC(I})
CONTINUE
PRINT 505
PRINT 506

DO 462 I=1sNCELLS
PRINT 43, Is STRESS1{Ijis STRESS2{(I}s THETA(I)
CONTINUE
PRINT 507

SCENTER+(SRADIUS)* (COSFITHETA2))
SCENTER~(SRADIUS) *(COSF(THETAZ2))
(SRADIUS)*(SINF(THETA2))

) )-CLOSTOL) 45144515455
) )—CLOSTOL) 45244524455
) )-CLOCSTOL) 45354535455
y)=CLOSTCL) 454494545455
)1 -CLOSTOL) 45694569455

U W N

W W N e
— o o
ooy
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PRINT 508
DO 463 I = 1s NCELLS
PRINT 439 Is STRAINX(I)s STRAINY(I)s STRANXY(I)
463 CONTINUE
PRINT 509
PRINT 510
DO 464 1 = 1s NCELLS
PRINT 43, Is STRESSX(I)s STRESSY(I)s STRESXY(I)
464 CONTINUE
CALL TIME ( 1HP )
9999 CONTINUE

END
Com——- SUBROUTINE TO COMPUTE THE VARIOUS STIFFNESS COEFFICIENTS IN THE
C STIFFNESS MATRIX S(IsJ)
SUBROUTINE SMATRIX (SSWsSNWsSNEsSSEsSW19sSW29SW39SN19sSN2sSN39SELsS
1 E29SE3955195529553sSCEN19sSCEN29sI119129MDaNW2)
DIMENSION S5(2344+43)
COMMON S
Crmm== EQUATION FOR X-DIRECTION
S({I11sMD=-NW2=-2) = SSW
S(I1sMD=NW2-1) = SSW
S(I1sMD=NW2) = SW1
S(I1sMD=NW2+1) ==5W2
S(I1sMD-NW2+2) = SNW
S{I1sMD-NW2+3) =—SNW
S(I1sMD-2) = 553
S(I1»MD-1) = 5§82
S(I1sMD) = SCEN1
StI1sMD+1) = SCENZ2
S(I1sMD+2) = SN3
S{I1sMD43) =~SN2
S({I1sMD+NW2-2) = SSE
S(I1sMD+NW2-1) =-SSE
S{I1sMD+NW2) = SE1
S{I1sMD+NW2+1) = SE2
S(I1sMD+NW2+2) = SNE
S{I1sMD+NW2+3) = SNE

C=-——-EQUATION FOR Y-DIRECTION

S(I2sMD=NW2-3) = SSW
S(124MD=NW2-2) = SSW
S(I12sMD=NW2-1) = SW2
S(I2sMD=NW2) = SW3
S(I2sMD=NW2+1) =—-SNW
S{I2+MD=NW2+2) = SNW
S(12sMD=3) ==5852
S{I12sMD-2) = 5§81
S(I2sMD-1) = SCENZ2
S(12+MD) = SCEN1
S(I12sMD+1) = SN2
S(I2:MD+2) = SN1
S{I12sMD+NW2-3) =~SSE
S(I12sMD+NW2-2) = SSE
S{12sMD+NW2=1}) ==SE2
S(I2sMD+NW2) = SE3
S{I2sMD+NW2+1) = SNE



S{I2sMD+NW2+2)
END
END

SNE
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APPENDIX II

DETAILS OF McCORMICK'S LATTICE ANALOGY

FOR PLANE STRESS PROBLEMS
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APPENDIX II

As stated in the text, the technique for solving stress problems in a
continuous body by a lattice analogy involves the generation and solution
of the continuous body. Appendix II will present a computer program
written for a lattice cell proposed by McCormick. This lattice cell,
Fig. 2, possesses both flexural and axial structural elements and hence
three components of movements (two translations and a rotation) of each
node are needed to describe fully the distortion of a lattice. It follows
that all three static equilibrium equations in a plane are needed to solve
for these node movements. Since this characteristic of the McCormick
lattice cell was found inefficiency relative to the simply connected models
of Figs. 1 and 3, the McCormick model was used only in the preliminary
stages of this study.

A computer program BODY 1 based on McCormick's lattice cell
was written in FORTRAN 60 language for the CDC 1604. The program is
essentially the same as the program written for the simply connected
lattice cells. The only difference is in the generation of the stiffness
matrix equation. The stiffness matrix equation for the McCormick's
lattice possesses equilibrium equations for moments about each node
where in the simply connected lattice only forces existed. Since this is
the essential difference in the two programs and the programs contain
descriptive comments cards, it is considered sufficient to present only

the listing of the BODY 1 program.

110




LISTING OF BODY 1 PROGRAM

111




112

.o SMITHsReEs PROGRAM BODY 1 CE010740 MCCORMICKS LATTICE CELL

PROGRAM BODY1

DIMENSION S(2409 57)s X(240)s F(240)s FF{240)s FSPCU 50),

1 IFSPC( 50)s IXSPC({ 50)s A(100)s B(100)s D(100)

2 STRESS1(100)sSTRESS2(100)s THETA(100)s STRAIN1I(100) s

3 STRAIN2(100)s STRAINX(100)s STRAINY(100)s STRANXY(100)>s

4 STRESSX(100)s STRESSY(100)s STRESXY(1CC)s RUN(10),

5 XPREVUS(5)s E(100)s V(100)

COMMON S
C—=—= BODY 1 PROSGRAM WILL SOLVE PROBLEMS OF PLANE STRESS USING
C MCCORMICKS LATTICE CELi . THE MEDIUM MAY BE LINEAR OR NON-LINEAR.
C MATERIAL PROPERTIES NECESSARY FOR A SOLUTION ARE THE RELATIONSHIP
C OF STATES OF STRESS TO STATES OF STRAIN.
C=NOTE-IT IS USUALLY NECESSARY TO ALTER DIMENSION STATEMENT FOR
C EACH PROBLEM.
C NOTATIONS
C
C NEQUAS = NUMBER OF MOVEMENTS--THAT IS NUMBER OF EQUATION IN
C MATRIX EQUATION SX=F NEQUAS = NODEWID*NODELEN#*3
C
C NTWID = TOTAL WIDTH OF BAND = 6%NODEWID + 9
C
C NWIDTH = BAND WIDTH OF MATRIX S(IsJ) AND IS EQUAL TO THE NUM-
C BER OF ELEMENTS FROM THE MAIN DIAGONAL TO THE
C EXTREME NONZERO ELEMENTe NOTE-—- TOTAL WIDTH OF
C BAND wOULD BE = 2(NWIDTH) + 1 = NTWID
C
C S(1sJ) = ELEMENTS IN THE STIFFNESS MATRIX S
C
C X(h = ELEMENTS IN THE MOVEMENT MATRIX (VECTOR) X
C
C FF(I) = ELEMENTS IN THE CONSTANT VECTOR FF WHICH 1S USED TO
C EQUATE THE VECTOR F 7O AFTER EVERY ITERATION
C
C FOIy = ELEMENTS IN THE LOAD MATRIX (VECTOR!) F
C WILL CHANGE IN VALUE DURING COMPUTATION--AFTER EACH
C ITERATION WILL RESET TO FF(T)
C
C ECI) = MODULUS OF ELASTICITY---~A VALUE FOR EACH LATTICE
C CELL--~ASSUMED VALUE FOR FIRST TRIAL---—INTERPOLATED
C FROM CURVES ON ITERATION TRIALS—--EASUMD ASSUMED
C VALUE FOR FIRST TRIAL
C
C VT = POISSONS RATIO---A VALUE FOR EACH LATTICE CELL =--
C ASSUMED VALUE FOR FIRST TRIAL-—=INTERPOLATED FROM
C CURVES ON ITERATION TRIALS-VALUMD IS ASSUMED
C VALUE FOR FIRST TRIAL
C
C STRESS1(1) = NORMAL STRESS MAX. PRINCIPAL FOR LATTICE CELL T
C STRESS2(1} = NORMAL STRESS MINe. PRINCIPAL FOR LATTICE CELL I
C THETA (1) = ANGLE FROM 1 DIRECTION 7O X DIRECTICN FOR LATTICE
C CELL I IN DEGREES ~-- CCW IS +
C
C STRAINI1I(I) = EXTENSION STRAIN MAXe. PRINCIPAL FOR LATTICE CELL I
C STRAINZ2(I) = EXTENSION STRAIN MINe PRINCIPAL FOR LATTICE CELL I
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STRAINX(I)
STRAINY(I)
STRANXY (1)

NCELLS
NODEWID
NODELEN
A(T)

B(I)

DeI
ITER
RUN(I)
(INPUT)

BWIDTH
(INPUT)

BLENGTH
{INPUT)

CELLEN
(INPUT)

CELTICK
(INPUT)

FSPC(I)
(INPUT)

IFSPC(I)
{INPUT)

IFNUM
IFNUM
(INPUT)

IXspC(I)
(INPUT)

IXNUM
(INPUT)

ITRCEL1---5

(INPUT)

nu u

]
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EXTENSION STRAIN IN X-DIRECTION FOR LATTICE CELL I
EXTENSION STRAIN IN Y-DIRECTION FOR LATTICE CELL 1
SHEAR STRAIN FOR X-Y ELEMENT FOR LATTICE CELL 1
NUMBER OF LATTICE CELLS = (NODELEN-1)(NODELEN-1)
NUMBER OF NODES IN THE WIDTH OF THE BODY

NUMBER OF NODES IN THE LENGTH OF THE BODY

AREA OF SIDE ELEMENT OF LATTICE CELL 1

MOMENT OF INERTIA OF SIDE ELEMENT OF LATTICE
CELL 1

AREA OF DIAGONAL ELEMENT OF LATTICE CELL 1

MAXIMUM NUMBER OF ITERATIONS TO BE ALLOWED IN
OBTAINING A SOLUTION

IDENTIFICATION CARD
WIDTH OF RECTANGULAR BODY
LENGTH OF RECTANGULAR BODY

SIDE DIMENSION OF THE LATTICE CELL--UNIFORM THROUGH
OUT BODY~-(BWIDTH/CELLEN) AND (BLENGTH/CELLEN) = AN
INTEGER

THICKNESS OF BODY---UNIFORM THROUGHOUT BODY
ELEMENTS IN F(I) VECTOR WHICH ARE SPECIFIED EITHER
FOR LOADS OR FOR MOVEMENT Of NODES.

THE INDEX I FOR FSPC(I)

NUMBER OF FSPC(I) ELEMENTS SPECIFIED
NUMBER OF FSPC(I) SPECIFIED

THE INDEX I FOR S(IsMD) WHERE MOVEMENTS OF NODES
ARE SPECIFIED
NUMBER OF SPECIFIED NODE MOVEMENTS

SPECIFICATION OF PARTICULAR CELLS TO BE MONITORED
FOR STRESS AND STRAIN COMPONENTS DURING ITERATIONS
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ITRMOV1=---5

(INPUT)

XPREVUS(I)

{INPUT)

CLOSTOL
(INPUT)

DSw
DNW
DNE
DSE

AS
AW
AW
AE

BS
Bw
BN
BE

CELLENZ

————— ALL FORMAT STATEMENTS ARE LISTED BELOW

1 FORMAT (1H1)
2 FORMAT (10A8 )
3 FORMAT (4(11051PE10«3))
4 FORMAT (1015)
5 FORMAT (1P8E10e3)
6 FORMAT (1Xs10A8)
20 FORMAT (/7 20H INPUT DATA//)
21 FORMAT { 41H MAXIMUM NUMBER OF ITERATIONS = I5 /)
22 FORMAT ( 31H MONITORED CELLS ARE 515 /)
23 FORMAT ¢ 46H NUMBER OF F(I) ELEMENTS SPECIFIED = [5/)
24 FORMAT | 46H NUMBER OF NODE MOVEMENTS SPECIFIED = 15/)
25 FORMAT ( 38H WIDTH OF RECTANGULAR BODY = 1PE10e3/)
26 FORMAT ( 39H LENGTH OF RECTANGULAR BODY = 1PE10e3/)
27 FORMAT ( 43H SIDE DIMENSION OF LATTICE CELL = 1PEl10e3/)
28 FORMAT ( 30H THICKNESS OF BODY = 1PEl10.3/ )
29 FORMAT ( 42H MODULUS OF ELASTICITY ASSUMED = 1PE10.3/)
30 FORMAT 35H POISSONS RATIO ASSUMED = 1PE10e3/ )
31 FORMAT (// 60H PRINT OUT OF SPECIFIED LOADS OR MOVEMENTS
1AT NODES )
32 FORMAT (/7 58H LOAD MOVEMENT
1 VALUE /)
33 FORMAT (11XsI5+34Xe1PE10e3)
34 FORMAT (33X»15+12X91PE10e3)

35 FORMAT

NOTATIONS USED TO REPRESENT MEMBER STIFFNESSES
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SPECIFICATION OF PARTICULAR NODE MOVEMENTS TO BE
MONITORED DURING ITERATION

STORED NODE MOVEMENTS(SAME AS MONITORED MOVEMENTS)
TO CHECK FOR CLOSUREe XPREVUS IS X MOVEMENT FROM
PREVIOUS ITERATION ’

A VALUE OF TRANSLATION OF NODE POINT WHICH IS THE
SPECIFIED CLOSURE TOLERANCE.

It

= DIAGONAL MEMBERS STIFFNESS.
EXAMPLE
DSW = (D(IN*E(1))/24828%CELLEN DSW(UNITS)=LB/IN
WHERE I IS NUMBER OF CELL WHICH CONTAINS DIA MEMBER

H

SIDE MEMBERS STIFFNESSe. EXAMPLE

AS = (A(I)*E(I) + A(III*E(II))/CELLEN
WHERE INDEX I AND II DENOTE CELL NUMBER ON EACH
SIDE OF MEMBER AS AS{UNITS)=LB/IN
= SIDE MEMBERS BENDING STIFFNESSe EXAMPLE
BS = (B(I)*E(I) + B(II)*E(II))/CELLEN
WHERE INDEX I AND II DENOTE CELL NUMBER ON EACH
SIDE OF MEMBER BS BS(UNITS) =LB-IN/RAD

il

CELLEN SQUARED

( 41H MONITORED NODE MOVEMENTS ARE 515/




NQMWID

NEQUAS = NWIDTH
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36 FORMAT (// 25H ITERATION DATA )
37 FORMAT (// 26H ITERATION NUMBER 15 //)
38 FORMAT (  39H TABLE OF MONITORED MOVEMENTS /)
39 FORMAT (  33H MOVEMENT VALUE )
40 FORMAT (13Xs1597Xs1PE10e3) |
41 FORMAT (// 37H TABLE OF MONITORED STRAINS /)
42 FORMAT (  64H CELL NUMBER MAXe STRAIN MINe STRAIN
1 THETA )
43 FORMAT (13XsI1557X»1PE10e395Xs1PEL1O«355Xs1PE10e3)
44 FORMAT (// 43H TABLE OF MONITORED STRESS VALUES /)
45 FORMAT (  51H CELL NUMBER MAXe STRESS MINe STRESS)
46 FORMAT (13XsI5s7Xs1PE10e355Xs1PE103)
47 FORMAT (  54H CLOSURE TOLERANCE FOR MONITORED NODE MOVEMENTS
1= 1PE10.3/)
500 FORMAT (/ 21H OUTPUT DATA //)
501 FORMAT ( 63H SOLUTION CLOSED WITHIN TOLERANCE AT ITERAT
110N NUMBER 15 /)
502 FORMAT ( 66H SOLUTION DID NOT CLOSE AFTER SPECIFIED ITE
1RATION NUMBER I5 /)
503 FORMAT (/ 33H TABLE OF NODE MOVEMENTS /)
504 FORMAT (//52H TABLE FOR THE STATE OF STRAIN AT EACH CELL
1 /)
505 FORMAT (//52H TABLE FOR THE STATE OF STRESS AT EACH CELL
1 /)
506 FORMAT ( 64H CELL NUMBER MAX«STRESS MINeSTRESS
1 THETA )
507 FORMAT (// 64H TABLE FOR STRAINS IN THE X-Y DIRECTIONS FO
1R EACH CELL /)
508 FORMAT (  65H CELL NUMBER STRAINX STRAINY
1 STRAINXY )
509 FORMAT (// 65H TABLE FOR STRESSES IN THE X-Y DIRECTIONS F
10R EACH CELL /)
510 FORMAT (  65H CELL NUMBER STRESSX STRESSY
1 STRESXY )
————— READ IN OF INPUT DATA |
————— READ IN OF IDENTIFICATION CARD
READ 2s (RUN(I)s I = 1, 10}
READ 4s ITERs ITRCEL1s ITRCEL2s ITRCEL3s ITRCEL4s ITRCELS5s IFNUM,
1 IXNUM
READ 4s ITRMOV1,ITRMOV2, ITRMOV3s ITRMOV4s ITRMOVS ‘
READ 5» BWIDTHs BLENGTHs CELLENs CELTICK, EASUMDs VASUMD, CLOSTOL
————— COMPUTATION OF NODEWID, NODELENsNEQUASs NTWIDs NWIDTHs NQMWIDs NCELLS
NLENM1ls NWIDM1ls JP, DENOM, NWIDP1ls, CELLEN2s MD |
TO BE USED THROUGHOUT PROGRAM |
BWID = (BWIDTH/CELLEN) + 1.0 |
BLEN = (BLENGTH/CELLEN) + 1.0 |
NODEWID = BWID |
NODELEN = BLEN |
NEQUAS = NODEWID*NODELEN*3 |
NTWID = NODEWID*6 + 9 |
NWIDTH = (NTWID-1)/2 |
MD = NWIDTH + 1 §
|
|



s o, e .

NCELLS = (NODEWID - 1)*(NODELEN - 1)
NLENM1 = (NODELEN - 1)

NWIDM1 = (NODEWID - 1)

JP = NODEWID*3

DENOM = CELLEN¥240

NWIDP1 = NODEWID + 1

CELLENZ2 = CELLEN*%2

NWw3 = 3*NODEWID

READ 3s (IFSPC(I)s FSPC(I)e I = 1sIFNUM)

READ 4s (IXSPC(I)s I = 1sIXNUM)

PRINT OUT OF INPUT DATA

PRINT 1

PRINT 69 (RUN(I)sI=1s10)

PRINT 20

PRINT 21, ITER

PRINT 22s ITRCEL1sITRCEL2+sITRCEL3sITRCEL4sITRCELS

PRINT 35, ITRMOV1sITRMOVZ2,ITRMOV3,ITRMOV4sITRMOVS

PRINT 23, IFNUM

PRINT 24s IXNUM

PRINT 25, BWIDTH

PRINT 26+ BLENGTH

PRINT 27s CELLEN

PRINT 28, CELTICK

PRINT 29s EASUMD

PRINT 30, VASUMD

PRINT 47, CLOSTOL

ROUTINE BELOW ESTABLISHES THE CONSTANT VECTOR FF (1)
DO 550 I = 1»IFNUM

IFF = JFSPC{I)
FF(IFF) = FSPC(I)
550 CONTINUE
————— TO PRINT OUT LOAD AND MOVEMENT SPECIFICATION
PRINT 31
PRINT 32
J =1
DO 551 I = 1sIFNUM
IF (IXSPC(J) = IFSPC(I)) 55295534552
552 IFF = IFSPC(I)
PRINT 33s IFFs FF(IFF)
GO TO 551
553 IXX = IXSPC(J)
PRINT 34, IXXs FF(IXX)
J=J +1
551 CONTINUE

SETTING E(I) AND V(I) FOR FIRST ITERATION
DO 201 I = 1sNCELLS

E(I) = EASUMD
Vi) = VASUMD
201 CONTINUE

B

BELOW IS DO LOOP 999 INCLUDES ALL COMPUTATION INVOLVED IN THE

ITERATION PROCESS
DO 999 IT = 1,ITER
ITERNUM = I7
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————— COMPUTATION OF THE STRUCTURAL ELEMENTS FOR EACH LATTICE CELL I
INFORMATION IN FROM INPUT AND OTHER SECTION OF PROGRAM
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CELLEN » CELTICKs Vt¢I)s NODEWIDs NODELEN
INFORMATION OBTAINED FROM THIS SECTION
Al(l)s B(I)s DtI)

SINCE CELLEN * CELTICK IS USED IN ALL EQUATIONS IN DO LOOP BELOW,
WILL COMPUTE OUTSIDE LOOP-—ALSO CELLEN**3,0%CELTICK/2440

CL3TD24 = (CELLEN*%#340)%CELTICK/2440
CLT = (CELLEN * CELTICK)

DO 200 I= 1sNCELLS |
Al = CLT/{(1le0 + V(I))*240)
B(I) = (CL3TD24)%(1e0-30%V(I))/(1e0=V(])*¥2)
D(I) = (VII)*®CLT*16414214)/(1e0-V(])¥%2)
CONTINUE

GENERATION OF STIFFNESS MATRIX S(IsJ) ELEMENTS AND THE VECTOR F(1I)
BELOW DO LOOP SETS ALL S(IsJ) ELEMENTS TO ZERO BELOW EACH GENERATION
DO 202 I = 1sNEQUAS

DO 202 J 1sNTWID
S(IsJ) = 0.0
CONTINUE

BELOW DO LOOP SETS ALL F(I) ELEMENTS EQUAL TO CONSTANT VECTOR FF(I)
DO 203 I = 1sNEQUAS

F(I) = FF(I)

CONTINUE

COMPUTING STIFFNESS ELEMENTS FOR FIRST CORNER NODE -~--THAT IS
NODE NUMBER ONE

N =1

Il = 3%N -~ 2

12 =11 +1

I3 =11 + 2

DNW = 0.0

DSW = 0.0

DSE = Qe 0

AS = 00

AW = Q0

BS = Q0

BW = 00

DNE = DI(NI*¥E{(N)/(2.828428*%CELLEN)
AE = A(NI*E(N)/CELLEN

AN = AE

BE = B(N)I*E{(N)/CELLEN

BN = BE

CALL SMATRIX (DSWeDSE sDNWeDNE s ASsAWSAE 9sANsBS+sBWsBNsBEsI1ls12y

13y MDoNW3sCELLENSCELLEN2)
COMPUTING STIFFNESS ELEMENTS FOR NODES ON FIRST COLUMN EXCLUDING
THE CORNER NODES

DO 204 N = 29 NWIDM1
Il = 3%¥N - 2
12 =11 + 1
I3 = 11 + 2
DSE = DI(N=1)1%E(N=1)/12.828428%CELLEN)
DNE = DINI®E(IN)/(2.828428%CELLEN)
AN = A(N}¥E(N)/CELLEN
AE = (A{N=1)%E(N-1)+A(NI*E(N))/CELLEN
AS = A(N=-1)*E(N-1)/CELLEN
BN = B(N)*E(N)/CELLEN
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BS = B{(N-1)*E(N-1)/CELLEN

BE = (B(N)*¥E(N)+B(N-1)*E(N=1))/CELLEN

CALL SMATRIX (DSWeDSE s DNWsDNE s ASs AWs AEsANsBSeBWeBNsBEsI1eI2s
1 I3y MDsNW3sCELLENCELLEN2)

204 CONTINUE
----- COMPUTING STIFFNESS ELEMENTS FOR TOP NODE ON FIRST COLUMN THAT IS
NODE NUMBER NODEWID

N = NODEWID
I1 = 3%N - 2
12 = 11 + 1
13 = 1 + 2
DNE z Qe0
AN = Q.0
BN = 00
DSE = D(N=-1)*¥E(N-1)/(2.828428%CELLEN)
AS = A(N-1)*#E(N-1)/CELLEN
AE = AS
BS = B(N-1)*E(N-1)/CELLEN
BE = BS
CALL SMATRIX (DSWeDSE sDNWsDNE s ASs AWs AEs ANsBS9sBWeBNsBEs11e12
1 I39 MDsNW3CELLENSCELLEN2)
————— COMPUTING STIFFNESS ELEMENTS FOR INTERIOR COLUMNS
NBOT = NWIDP1
INW = NODEWID
ISwW = NODEWID + 1
INE = 1
ISE = 2
DO 205 NCOLUMN = 2,NLENM1
N = NBOT
————— COMPUTING STIFFNESS ELEMENTS FOR BOTTOM NODES ON INTERIOR COLUMNS
11 = 3%N - 2
12 = J1 + 1
13 =11 + 2
DSw = Qa0
DSE =z 0s0
AS = 0.0
BS = Q60
DNE = D(N=INE)*E(N=INE)/(2¢828428%CELLEN)
DNW = D(N-~INW)*E(N~INW)/(2+828428*%CELLEN)
AW = A(N-INW)*E(N-INW)/CELLEN
AN = (A(N-INW)*E(N-INW)+A(N-INE)*E (N~INE))/CELLEN
AE =  A(N~INE)*E(N~INE)/CELLEN
Bw = B(N-INW)*E(N-=INw)/CELLEN
BN = (B(N-INW)*E(N-INW)+B{(N—INE)*E(N-INE))/CELLEN
BE = B(N=-INE)*E(N-~INE)/CELLEN
CALL SMATRIX (DSWsDSE sDNW s DNE s ASs AWs AEsAN9BSsBWeBNsBEsI1s12,
1 I3y MDsNW3sCELLENSJCELLENZ)
————— COMPUTING STIFFNESS ELEMENTS FOR INTERIOR NODES FOR INTERIOR COLUMNS
NBOTP1 = NBOT + 1
NTOPM1 = NBOT + NODEWID - 2
DO 206 N = NBOTP1sNTOPMI
11 = 3%N - 2
12 =11 +1
I3 =11 + 2 -
DSE = D(N-ISE)*E(N—ISE)/ (2.828428%CELLEN)




DNE
DNW
DSw
AS
AW
AN
AE
BS
Bw
BN
BE
CALL SMATRIX
1
206 CONTINUE

————— COMPUTING STIFFNESS ELEMENTS FOR TOP NODE ON INTERIOR COLUMNS

N
I1
I2
13
DNW
DNE
AN
BN
DSW
DSE
AW
AS
AE
Bw
BS
BE

CALL SMATRIX

NBOT
INW
INE
Isw
ISE
205 CONTINUE

Howw B o na
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D(N-INE)*E(N—INE)1/(2.828428%CELLEN)

D(N-INW)I*E(N~INW)/(2.828428%CELLEN)

DIN-ISW)I*E(N-ISW)/(2.828428*CELLEN)

(AIN=ISW)*E(N-ISW)+A(N-ISE)*E(N-ISE))/CELLEN
(A(N=ISW)*E(N-ISW)+A(N—-INW)*E(N-INW))/CELLEN
(A(N=INE)*E(N-INE)+A(N-INW)*E(N-INW))/CELLEN
(A(N=INE)*E(N~-INE)+A(N-ISE)*E(N-ISE))/CELLEN
(BIN=-ISW)*E(N-ISW)+B(N-ISE)*E(N-ISE))/CELLEN
(BIN-ISW)*E(N-ISW)+B(N-INW)*E(N—INW))/CELLEN
(B(N~INE)*E(N=-INE)+B(N-INW)*E(N-INW))/CELLEN
(B(N-INE)*E(N-INE)+B(N-ISE)*E(N-ISE))/CELLEN

(DSWeDSE s DNW 9sDNE s ASs AWs AEsANsBSsBWsBNyBEsI1s12,

13y MDsNW3sCELLENSCELLEN2)

NBOT + NwIDM1
3%N - 2
11 + 1
11 + 2
0.0
0«0
C.0
0.0
DIN=-ISW)*E(N-ISW)/(2.828428%CELLEN)
DIN-ISE}*E(N-ISE)/(2.828428%CELLEN)
A(N-ISW)*E(N-ISW)/CELLEN
(A(N-ISW)*E(N-ISW)+A(N-ISE)*E(N~-ISE)})}/CELLEN
A(N-ISE)*E(N-ISE)/CELLEN
B{N-ISW)*E(N-ISW)/CELLEN
(BIN-ISW)¥E(N-ISW)+B{N-ISE)*E(N-ISE))/CELLEN
B{(N-ISE)*E(N-~ISE)/CELLEN

(DSWeDSEsDNWsDNE s ASsAWSAEsANSBSsBWsBNsBEsI1s12,

I39 MDosNW3sCELLENSCELLEN2)
NBOT + NODEWID
INW + 1
INE + 1
ISW + 1
ISE + 1

————— COMPUTING STIFFNESS ELEMENTS FOR LAST COLUMN

————— COMPUTING STIFFNESS ELEMENTS FOR BOTTOM NODE OF LAST COLUMN

N
Il
12
I3
DSW
DNE
DSE
AS
AE
BS
BE
DNW
AW
AN

[ T S 1 T {1 L T N | O 1 O 1 N S {1}

NBOT
3%N - 2

et

OO OO OO K-

1
I 2

[ocNoNoNeNoNoRE B 4

0.0
D(N-INW)*E(N-—INW)/(2.828428%CELLEN)
A(N-INW)*E(N-INW)/CELLEN

AW
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Bw = BIN-INW)*E(N-INW)/CELLEN
BN = BW
CALL SMATRIX (DSWeDSEsDNWsDNE s ASs AWs AEsANsBSsBWsBNsBEs 1112,
1 139 MDoNW3sCELLENSCELLEN2)
C—m——- COMPUTING STIFFNESS ELEMENTS FOR INTERIOR NODES ON LAST COLUMN
M =N+ 1
NLASTM1 = NODEWID*NODELEN -~ 1
DO 207 N = MsNLASTMI1
I1 = 3%N - 2
12 =11 +1
13 =11 + 2
DNW = DI(N-INWIXE(N-INW)}/(2.828428*%CELLEN)
DSw = D(N-ISW)*E(N-ISW)/(2.828428%CELLEN)
AS = A{(N-ISW)*¥E(N-ISW)/CELLEN
AN = A(N-INW)*E(N~INW)/CELLEN
AW = AS + AN
BN = B{(N-INW)®E(N-~INW)/CELLEN
BS = B{N-ISW)*E(N-ISW)/CELLEN
BwW = BS + BN
CALL SMATRIX (DSWsDSEsDNW sDNE s ASs AW AE9ANsBS+sBWsBNeBEsIls 12,
1 I3, MDoNW3,CELLENSCELLENZ2)
207 CONTINUE
Co=— COMPUTING STIFFNESS ELEMENTS FOR LAST NODE
N = NODEWID®*NODELEN
11 = 3N - 2
12 = I1 +1
13 = I1 + 2
DNW = Q0
DSE = 00
DNE = De0
AN = Qa0
AE = 00
BN = Q.0
BE = 0.0
DSW = D(N-ISW)*E(N-ISW)/(2.828428%CELLEN)
AW = A(N-ISW)*E(N=<ISW)/CELLEN
AS = AW
BW = BIN-ISW)¥E(N-ISW)/CELLEN
BS = BW
CALL SMATRIX (DSWsDSE sDNWsDNE s ASs AWs AEsANsBS+sBWsBNeBEsIlsI2s
1 13y MDsNW3sCELLENSCELLEN2)
C—=—- END OF GENERATING GENERAL MATRIX S{(IsJ)
Com—ae BELCW DO LOOP SETS THE DIAGONAL ELEMENT S(IsMD) = 140 AND ALL
C OTHER ELEMENTS S(IsJ) = 00 ON I ROW WHENEVER THE MOVEMENT X(I)
C I1s SPECIFIED
DO 208 I = 1+IXNUM
IXX = IXSPCI(I)
DO 209 J = 1sNTWID
S{IXXsJ) = De0
209 CONTINUE
S{IXXsMD) = le0
208 CONTINUE
Cr=erm= SOLUTION OF STIFFNESS MATRIX EQUATION FOR NODE MOVEMENTS X(I)e
C DIRECT ELIMINATION PROCESS WILL STOP IF A ZERO PIVOT IS ENCOUNTERED

C INFORMATION USED FROM INPUT AND OTHER SECTION OF THIS PROGRAM




C S{IesJ)sFI(I)
Crmmm—m INFORMATION
C NODE MOVEME
DO 103 I =
1P1
IPN
N
DO 103 L
N
M )
IF ( S(LsM)
C NOTE---NEED TO
104 XM
F(L)
MN
LL
DO 103 MM
S({LsMM)
103 CONTINUE
C END OF
11
NEQ
NN
DO 105 1
IP1
N
NN = NN
DO 105 L
N
M
IF ( S(LsM)
C NOTE---NEED TO
106 XM
F(L)
MN =
LL =
DO 105 MM
S(LsMM)
105 CONTINUE
CALL TIME (
END OF
NOTE-—--WILL ELI
S(1sJ)
S(IsMD)
1A
DO 108 1
1B
1BM1
1BMN
MB
DO 108 L
MB
MBB
C NOTE--—NEED TO
XM

aNaNala!
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sNEQUASIsNTWIDONTWIDTHsNQMWID
OBTAINED FROM THIS SECTION
NTS VECTOR X(I)
1» NGQMWID

1 + 1

I + NWIDTH

0

IP1s IPN

N + 1

MD - N

) 104, 1034 104
ADD LOGIC STATEMENT FOR ZERO PIVOT
=S{LsM)/S(IsMD)
F(L)Y + XM * F(1)
M + NWIDTH

L - 1

Ms MN

S(LsMM) + XM ¥ S(I ¢MM+LL)

Hownnunn

nouun

TRIANGULAR RESOLUTION OF ALL BUT LAST SECTION OF S(IsJ)
NEQUAS - NWIDTH + 1

NEQUAS - 1

0
I1s NEQ

I + 1

0

wononon

+ 1
IP1s NEQUAS
N + 1
MD - N

) 106s 105, 106
ADD LOGIC STATEMENT FOR ZERO PIVOT
=S{LsM)/S(IsMD)

FLL) + XM * F(I)
M + NWIDTH -~ NN
-1
Ms MN
S(LsMM) + XM * S(IsMM+LL)

-

1HP )
TRIANGULAR RESOLUTION
MINATE COLUMN BY COLUMN IN THE TRIANGULAR MATRIX
IN ORDER TO OBTAIN ONLY A DIAGONAL MATRIX SAY
THEN WILL SOLVE FOR X(I)e
NEQUAS + MD

= MDs NEQUAS
= JA - 1
= IB -1
= IB - NWIDTH
= -1
= IBMNs IBM1
= MB + 1
= NTWID - MB

ADD LOGIC STATEMENT FOR ZERO PIVOT
= =~ S(LsMBB)/S(IBsMD)
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C NOTE---SINCE IT IS NOT NECESSARY TO GO THROUGH THE ELIMINATION OF COLUMN

C ELEMENTS ABOVE PIVOT ELEMENTS EXCEPT TO STUDY COMPUTATIONAL
C ERRORSs WILL NOT GO THROUGH THIS COMPUTATION
F(L) = F(L) + XM * F(IB)
108 CONTINUE
C END OF DIAGONALIZATION EXCEPT FOR LAST SECTION
IA = NWIDTH + 2
N = -]
DO 109 I = 29 NWIDTH
IB = JA « 1
IBM1 = 18 -1
N =N + 1
DO 109 L = 1y IBMI1
NN = NTWID - N - L

XM - S(LsNN)/S{IBsMD)
S(LsNN) = S(LsNN) + XM % S(IBsMD)
FiL) = F{(L) + XM ¥ F(IB)
109 CONTINUE
C NOTE---wILL NOW EVALUATE X(I) BY SIMPLE DIVISION

C COMPUT ING UNKNOWNS X(1I)
DO 110 I = 1s NEQUAS
X(I) = F(I)/S(1,MD)
110 CONTINUE
C-———=TO0 COMPUTE THE STATE OF STRAIN AT THE CENTER OF EACH LATTICE CELL
C FORM THE MOVEMENT OF THE NODE POINTS X(I)
ICLBOT = 1
ICLTOP = NWIDM1
JJ = 0
DO 300 I = 1sNLENM1
J = JJ - 2
DO 299 N = ICLBOTs ICLTOP
J o= Jd + 3
C-—--=T0 COMPUTE STRAINS WITH REFERENCE TO X-Y DIRECTIONS
STRAINX(N) = (X(J+JP+3) + X(J+JP) - X(J) - X(J+3))/DENOM
STRAINY(N) = (X(J+JP+4) —= X(J+IP+1) - X(J+1) + X(J+4))/DENOM
STRANXY(N) = (X(J+JP+3) + X(J+JP+4) = X(J+JP) + X(J+JP+1) - X(J)
1 =X{J+1) + X(J+3) = X(J+4))/DENOM
Cemmmm TO COMPUTE PRINCIPAL STRAINS
C EC = STRAIN AT CENTER OF MOHRS CIRCLE
C ER = RADIUS OF MOHRS CIRCLE
EC = (STRAINX(N) + STRAINY(N))/2.0
ER = ((((STRAINX(N)«STRAINY(N))*%2 )/4.0) +
1 ((STRANXY(N)%%2 ) /440))%%045
STRAIN1(N) = EC + ER
STRAIN2(N) = EC - ER
(== BELOW LOGIC IS TO TAKE CARE OF THE CASES OF ATANF(Z) WHERE Z =
C (0/0) OR (1/0)
IF (STRANXY(N)) 31243104312
310 IF(STRAINX(N)-STRAINY(N)) 311+320+311
312 IF (STRAINX(N)-STRAINY(N)) 311,321,311
321 IF (STRANXY(N)) 313,311,314
313 THETA(N) = «4540
GO TO 299
314 THETA(N) = 4540

GO TO 299
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311 THETAZ2 = (ATANF(STRANXY(N)/(STRAINX(N)-STRAINY(N)}))
————— CHANGING THETA2 TO DEGREES
THETAZ2 = THETA2%5742957795

----- BELOW LOGIC IS TO PLACE THETA2 IN CORRECTION QUADRANT SINCE
IN THE ATANF( ) ROUTINE ONLY ANGLES IN FIRST AND SECOND QUADRANT
ARE COMPUTED
IF (STRANXY(N))301+3019302

301 IF (STRAINX(N)=STRAINY(N)) 30342995302
303 THETAZ = THETA2 - 18040
GO TO 305
302 IF (STRAINX(N)=STRAINY(N)) 30442999305
304 THETAZ2 = THETA2 + 18040
GO TO 305
320 THETA2 = 0e0
305 THETA(N) = THETA2/2.0
299 CONTINUE
JJ = JJ + JP
ICLBOT = ICLBOT + NWIDM1

ICLTOP ICLTOP + NWIDM1
300 CONTINUE
————— PRINT OUT OF ITERATION DATA
PRINT OUT OF NODE MOVEMENT FOR EACH ITERATION---ONLY THOSE MOVE-
MENTS BEING MONITORED WILL BE PRINTED HERE
PRINT 1
PRINT 69 (RUN(I)s I = 1510)
PRINT 36
PRINT 37, IT
PRINT 38
PRINT 39
PRINT 40s ITRMOV1s X(ITRMOV1)
PRINT 40y ITRMOVZs X(ITRMOV2)
PRINT 40s ITRMOV3s X(ITRMOV3)
PRINT 40s ITRMOV4s X(ITRMOV4)
PRINT 40, ITRMOVS5s X(ITRMOV5)
—-=——=T0O PRINT OUT MONITORED STRAINS VALUES
PRINT 41
PRINT 42 :
PRINT 43, ITRCEL1s STRAIN1(ITRCEL1)s STRAIN2(ITRCEL1)s THETA(ITRCE
1L1)
PRINT 43, ITRCEL2s STRAIN1(ITRCEL2)s STRAIN2(ITRCEL2)s THETA(ITRCE
1L2)
PRINT 43, ITRCEL3s STRAINL(ITRCEL3)s STRAIN2(ITRCEL3)s THETA(ITRCE
1L3)
PRINT 43, ITRCEL4» STRAIN1(ITRCEL4)s STRAIN2(ITRCEL4)s THETA(ITRCE
L4
PRINT 43, ITRCEL5s STRAIN1(ITRCEL5)s STRAIN2(ITRCEL5)s THETA(ITRCE
1L5)
————— COMPUTATION OF SECANT PLANE FOR EACH LATTICE CELL---E(I) V(I)
AND ALSO STATE OF STRESS
INFORMATION USED FROM INPUT AND OTHER SECTIONS OF PROGRAM
STATE OF STRESS VERSUS STATE OF STRAIN THAT IS
STRAIN1(I) AND STRAINZ2{I)
————— INFORMATION OBTAINED FROM THIS SECTION-«-— E(I}s V(I)s STRESS1(I)
STRESS2(2)



124

————— FOR PROGRAM BODY1 WILL USE HOOKES LAW FOR F THAT IS WILL BE A
LINEAR MATERIAL---WILL SIMPLY WRITE VALUES OF E AND V IN PROGRAM
DO 450 I = 1oNCELLS
————— HOOKES LAW FOR SIGMA = F(El,E2) BELOW STEEL
STRESS1(I) 119064762%(STRAIN1(I) + Oe4¥*¥STRAINZ2(I))
STRESSZ2(1) 119044762%(STRAIN2(I) + 0e4*STRAIN1(I))
----- TO SOLVE FOR REVISED E(I) AND vI(I)

BB = (STRESS2(I)-STRAIN2(I)*STRESS1(I)/STRAIN1(I))/
1 (STRAINL(I)—(STRAIN2(I)%%2)/STRAIN1(I))

AA = (STRESS1(I)-STRAIN2(1)%BB)/STRAIN1(I)

vV(l) = BB/AA

ECI) = AA¥(1e0-V(])¥¥2)

450 CONTINUE
————— COMPUTATION OF STRESSES ON X~-Y PLANES
INPUT DATA TO THIS SECTION ARE STRESS1(I)s STRESS2(I)s THETA(I)
OUTPUT OF THIS SECTION IS STRESSX(I)s STRESSY(I)s STRESXY(I)
DO 449 I = 1, NCELLS

SCENTER = (STRESSI(I)+STRESS2(1))/2.0
SRADIUS = (STRESS1(I)~-STRESS2(1))/2.0
THETAZ2 = 0e03490658%THETA(I)

STRESSX(I) = SCENTER+(SRADIUS)*(COSF(THETA2))
STRESSY(1I) = SCENTER-(SRADIUS)*(COSF(THETA2))
STRESXY(I) = (SRADIUS)I*(SINF({THETA2})

449 CONTINUE
————— TEST ON CLOSURE BASED ON MOVEMENTS OF NODES

IF  (ABSF(X(ITRMOV1)-XPREVUS{ 1 ) )-CLOSTOL) 45144514455
451 IF (ABSF(X(ITRMOV2)-XPREVUS! 2 ))~-CLOSTOL) 45244525455
452 IF (ABSF(X(ITRMOV3)-XPREVUS( 3 ))—CLOSTOL) 45344534455
453 IF (ABSF(X(ITRMOV4)=-XPREVUSH 4 ))~CLOSTOL) 45444544455
454 IF (ABSF(X{ITRMOVS5)-XPREVUS( 5 ))1~CLOSTOL) 45694564455

----- SETTING X( 1---5 ) = XPREVUS(ITRMOV--)
455 XPREVUS( 1 ) = X{ITRMOV1)

XPREVUSI( 2 ) = X(ITRMOV2)

XPREVUSH{ 3 ) = X(CITRMOV3)

XPREVUSI 4 ) = X({ITRMOV4)

XPREVUS 5 ) = X{ITRMOVS)

----- STATEMENT 999 IS CONTINUE STATEMENT OF ITERATION LOOP
STATEMENT 456 WILL BE START OF PRINT OUT OF OUTPUT
999 CONTINUE

PRINT 1

PRINT 6s (RUN(I)»1=1510)
PRINT 500

PRINT 502, ITERNUM

GO TO 459

456 PRINT 1

PRINT 69 (RUN(I)sI=1910)

PRINT 500

PRINT 501, ITERNUM
459 PRINT 503

PRINT 39

DO 460 1=1sNEQUAS

PRINT 40s Is X(I)
460 CONTINUE

PRINT 504

PRINT 42
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DO 461 I=1sNCELLS
PRINT 43, Is STRAIN1(I)s STRAIN2(I)s THETA(I)
461 CONTINUE
PRINT 505
PRINT 506
DO 462 I=1sNCELLS
PRINT 43, Is STRESS1(I)s STRESS2(I)s THETA(ID)
462 CONTINUE
PRINT 507
PRINT 508
DO 463 1 = 1s NCELLS
PRINT 43s Is STRAINX(I)s STRAINY(I)s STRANXY(I)
463 CONTINUE
PRINT 509
PRINT 510
DO 464 1 = 1s NCELLS
PRINT 435 Is STRESSX(I)s STRESSY(I)s STRESXY(I)
464 CONTINUE

END

SUBROUTINE SMATRIX (DSWeDSEsDNWsDNEsASsAWsAEsANsBSsBWeBNsBEsI1912,
1 134 MDsNW3»CELLENSCELLEN2)

DIMENSION S5(240+57) ’

COMMON S

C STIFFNESS ELEMENTS BELOW ARE FOR FORCES IN X-DIRECTION

S(11sMD=~NW3-3) = -DSW
S(I1sMD~NW3-2) = -DSwW
S(I1sMD=NW3) = —AW
S(I1sMD-NW3+3) = —DNW
S(I1+sMD-NW3+4) = DNW
S(I1eMD=3) = =12.0%BS/CELLEN2
S(I1sMD~1) = 6.0%BS/CELLEN
S(I1.MD) = (AE+AW+DNE+DNW+DSE+DSW+1240% (BN+BS)/CELLEN2)
S(I1sMD+1) = (DNE+DSW-DSE-DNW)
S(I1sMD42) = 640%(BS-BN)/CELLEN
S{I1sMD+3) = -12.0%BN/CELLEN2
S{I1sMD+5) = -6.0%¥BN/CELLEN
S(I1sMD+NW3-3) = -DSE
S(I1+MD+NW3-2) = DSE
S(I1sMD+NW3) = -AE
S(I1+MD+NW3+3) = <DNE
S(I1sMD+NW3+4) = —~DNE

C STIFFNESS ELEMENTS BELOW ARE FOR FORCES IN Y-DIRECTION

S(I2sMD~NW3-4) = —-DSW
S{I2sMD=NW3-3) = -DSwW
S(I2+MD-NW3) = ~12.0%BW/CELLENZ
S{I2sMD-NW3+1) = —6.0%BW/CELLEN
S{I2sMD=NW3+2) = DNW
S(I2sMD-NW3+3) = —DNw

S(I2sMD=3) = =AS

S(I2sMD~1) = (DSW-DNW+DNE-DSE)
S(I12sMD) = (DSW+DNW+DNE+DSE+AN+AS+120% (BE+BW) /CELLEN2)
S(I2sMD+1) = 6.0%(BE-BW)/CELLEN
S(I2sMD+3) = -AN

S{I12sMD+NW3«y)
S(I2sMD+NW3-3)

DSE
-DSE

fnH
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S({I2sMD+NW3) = -12.0%BE/CELLEN2
S(I2sMD+NW3+1) = 640%BE/CELLEN
S(I2s MD+NW3+2) = -DNE
S(I2+sMD+NW3+3) = -DNE

C STIFFNESS ELEMENTS BELOW ARE FOR MOMENTS

S(I3sMD~NW3-1) = 640%BW/CELLEN
S(I3+sMD-NW3) =z 240%BW
S(I3sMD-5) = -6.0%BS/CELLEN
S(I34MD=3) = 2.0%BS

S(I3sMD=2) = 6.0%(BS—BN)/CELLEN
S(I3sMD-1) = 6.0%(BE-BW)/CELLEN
S({I3sMD) = (BW+BN+BE+BS)%*4.0
S(I3sMD+1) = 6.0%BN/CELLEN
S(I3sMD+3) = 2.0%BN
S(I3sMD+NW3-1) = —6«0%BE/CELLEN
S(I3sMD+NW3) = 24 0%BE

END
END



A PPENDIX III

COMPUTER SOLUTION OF EXAMPLE PROBLEM

CANTILEVER BEAM
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SMITH ReEe.

PROGRAM BODY 2

12 8

GENERAL SIMPLY CONNECTED LATTICE MODEL

CANTILEVER BEAM FINER MESH FOR STRESS DISTRIBUTION UNDER LOADS

INPUT DATA

MAXIMUM NUMBER OF ITERATIONS

]
[

MONITORED CELLS ARE 1 2 3 4 5
MONITORED NODE MOVEMENTS ARE 1 2 3 4 5
NUMBER OF F(I) ELEMENTS SPECIFIED = 36

NUMBER OF NODE MOVEMENTS SPECIFIED = 26

WIDTH OF RECTANGULAR BODY = 4,000E+00

LENGTH OF RECTANGULAR BODY = 6.000E+00

SIDE DIMENSION OF LATTICE CELL = 54000E-01

THICKNESS OF BODY = 1.000E+00

MODULUS OF ELASTICITY ASSUMED = 3.000E+07

POISSONS RATIO ASSUMED = 3.,000E~-01

CLOSURE TOLERANCE FOR MONITORED NODE MOVEMENTS =

1.000E+00

PRINT OUT OF SPECIFIED LOADS OR MOVEMENTS AT NODES

LOAD

19

37

55

73

91

MOVEMENT VALUE
~3750E+02
17 =1.623E-02
18 84433E-03
~2.625E+03
35 ~14617E-02
36 6e940E-03
~3+000E+03
53 ~1610E~-02
54 5¢448E-03
~34000E+03
71 =1+607E-02
72 44056E-03
-3+000E+03
89 ~1«603E-02
90 24665E~03
~24625E+03
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217
219
221

107
108

125
126
143
144
161
162
179
180
197
198
215
216

233
234

-14602E-02

1329E-03
~34750E+402
-14602E-02
-Te474E-06
-1.603E-02
-14340E-03
-1«605E-02
~2¢672E-03
-1e4609E~02
~44058E~03
-1e612E-02

-56444E-03

-14619E-02
~-64936E-03
~24500E+03
~54000E+03
-2+500E+03
~14625E-02
~8+428E-03

129
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CANTILEVER BEAM FINER MESH FOR STRESS DISTRIBUTION UNDER LOADS

ITERATION DATA

ITERATION NUMBER 1

TABLE OF MONITORED MOVEMENTS

MOVEMENT

U N

VALUE
~3400269946E-02
9¢69501243E~-03
«~2481369407E-02
9.65786455E-03
~2463032800E-02

TABLE OF MONITORED STRAINS

CELL NUMBER

WP WwN e

MAXe STRAIN
8403825628E-05
6461160891E-05
6¢84817200E-05

- 7488849298BE-05

9419976205E~05

MINe STRAIN
—1e¢21794494E-04
-162220941E-04
-2411362318E-04
~2¢57573902E~04
~3404542868E-04

THETA
3427890661E+01
1¢24394338E+01
6e46671443E+00
4,883830785+00
4.50047363E+00



131

CANTILEVER BEAM FINER MESH FOR STRESS DISTRIBUTION UNDER LCADS

OUTPUT DATA

SOLUTION CLOSED WITHIN TOLERANCE AT ITERATION NUMBER 1

TABLE OF NODE MOVEMENTS

MOVEMENT VALUE

1 -3400269946E-02
2 9¢69501243E-03
3 ~2481369407E-02
4 9465786455E~03
5 ~2463032800E-02
6 9¢56239930E~03
7 «2e45278534E~-02
& 9e43728342E~03
9 ~2¢27966100E-02
10 9¢28991183E~03
11 ~2¢11019425E-02
12 9412001506E-03
13 ~1e94412616E-02
14 892452359E~03
15 «1e78164348E-02
16 Be69824659E-03
17 -1462300000E-02
18 8.+43300000E-03
19 -3¢00316425E-02
20 787591240E~-03
21 -2481112035E-02
22 7+85055906E~-03
23 ~2e62734960E-02
24 7e79439829E-03
25 «2e4492T054E~02
26 Te¢71170157E-03
27 -2e27553117E-02
28 7¢60393794E~03
29 ~2¢10536846E-02
30 Te47173340E=03
31 ~1493857053E-02
32 7¢31512206E-03
33 ~1477530956E-02
34 7413553283E-03
35 ~1461700000E-02
36 6+94000000E~03
37 ~2499692888E~02
38 6¢16011935E-03
39 ~2e80753849E-02
40 6+413421061E~-03
41 ~2e¢62466714E-02
42 6+09977836E~03
43 «2e44670948E~02

44 6¢04796864E~03




45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

—2¢27260843E-02
5.97540860E-03
~2410185563E-02
5.88054324E-03
-1493438639E-02
5476281629E-03
~1477057287E-02
5¢62102602E-03
-1461000000E-02
5444800000E~03
~2¢98697488E=~02
4452233977E-03
~2480231520E-02
4449570141E-03
~2462182273E-02
4e47424T714E-03
~2e44481139E-02
4el44616569E-03
—2e27077717E-02
4440368582E-03
~2409962989E-02
4434315281E-03
~1493156771E-02
4426362564E-03
-1476689648E-02
4416588478E-03
-1+460700000E-02
4+05600000E~03
~2497530660E-02
2094325262E-03
~2e79595255E~02
2¢91737884E-03
—2¢618954T4E=-02
249079606 7E-03
—2e44353424E-02
2489995111E-03
-2026990322E~02
2.88284379E~03
~2e09855267E~02
2.85216527E-03
~1493000754E~02
2+.80656614E-03
~1476485291E~02
2474577321E-03
~1¢60300000E-02
2 466500000E-03
~2¢96147244E-02
1e40914987E-03
—2.78948627E-02
1¢38614713E~03
~2461665273E-02
1¢39150405E-03
—2¢44298100E-02
1¢40029663E-03
~226986826E~02

132




100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

1440360597E~03
~-209842828E-02

1.39801984E-03
~1e92953163E-02

1¢38278185E~03
~176381773E-02

135842910E~-03
-160200000E~02

132900000E-03
~2e94528674E-02
~8e33236413E~-05
~2e78461009E-02
~9+70638765E~05
-2461541327E-02
-8e37067224E-05
-2e44320797E-02
~6e47046586E~05
~2e27053046E~-02
-4 467787B47E-05
~2+09905903E-02
-3421501591E-05
-1692994182E-02
-2.10775896E-05
~-1676404382E~-02
~1¢30193909E-05
~-1602C00000E-02
~Te47400000CE-06
~2¢93869444E-02
~-1e55282941E-03
~2e78233336E-02
~1655145392E-03
~2e61551167E-02
~1453669676E-03
~2e44417489E~02
~151317543E~-03
-2e2T7173098E-02
~1+48526705E-03
-2410025219E-02
-1445408995E-03
-1¢93107435E~02
~1e41941623E~-03
-1e76506344E-02
~1+38077940E-03
-1.60300000E-02
-1434000000E-03
~-2e94088773E-02
~3403405973E~03
~2478387904E-02
~3401716715E-03
-2e¢61723496E-02
~2e¢99686650E~03
~2+44588505E~02
~2e96890444E~03
~2273356838-02
~2093240938E~-03

133



155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

-2410188374E-02
—2+88607890E~-03
~1e93281566E~-02
—2+82859776E-03
~-1e¢76709138E-02
—-2+75898213E-03
-1.60500000E-02
-2e67200000E-03
—-2¢94986343E~-02
-4455339400E-03
-278941636E-02
~4¢52162521E~03
—-262089551E-02
-4 e49178967E-03
—244838065E-02
-4e45642145E-03
-2e27534907E-02
-4 +41007606E~03
-2210390254E-02
-4e34766344E-03
-1493515174E-02
~4426672825E~-03
-1.76972399E-02
~4416770747E-03
-1460900000E-02
-4 e05800000E-03
—-2e96415801E-02
-6¢13316709E-03
—279861899E-02
-6e08743507E-03
~2¢62656130E-02
~6¢04437784E-03
~-2e¢45155833E-02
~5e99842895E~-03
~2e27764550E-02
~5493962308E-03
-2410637858E-02
-585743565E-03
—1493818843E-02
—54748709C2E-03
-1e77355533E-02
-5461310369E-03
-1461200000E~02
-5+44400000E-03
~2498176886E-02
-7+79185515E~-03
—-2e81125696E-02
-T7e73473899E~03
~2e63413248E-02
-7 e67573779E-03
~2e¢45491454E-02
~T7e61768561E-03
-2.28022082E~-02
~T7e54128593E~-03
~2610955064E-02

134



210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

~7e¢43160843E~03
-1694213920E-02
-729082720E-03
~177812496E-02
-712272607E-03
-161900000E-02
-6493600000E-03
~2¢99923834E~-02
-9¢51397656E~-03
-2 e82698176E~02
~9¢47200468E-03
~2e64309993E-02
-9¢42684137E-03
~2¢45772340E-02
-9¢34469526E-03
~2428361812E-02
-9.22519558E-03
~2¢11378505E-02
-9407774740E~-03
~1e9472638BE-02
-890000615E-03
-1+78414508E~-02
~8¢68635497E-03
-162500000E-02
-8442800000E-03

TABLE FOR THE STATE OF STRAIN AT EACH CELL

CELL NUMBER

MAXe STRAIN -
8.03825628E-05
6461160891E-05
6.84817200E~-05
7488849298E-05
9e19976205E-05
14 06559925E-04
1e22340925E-04
1.28831939E-04
2428643137E-04
134969184E-04
9465842493E~05
B¢72153185E-05
9+424349T701E-05
1603236747E-04
1¢13136369E~-04
1¢33905212E-04
3¢03206685E-04
2¢09405460E-04
1457060525E-04
1.32855450E-04
125912018E-04
1¢28427421E-04
137403776E-04
1.441984555E-04
34318B68601E-04

MINe STRAIN
-121794494E~-04
~1.62220941E-04
~2411362318E-04
~257573902E~-04
-3.04542868E-04
-3.54848682E-04
-4409311705E-04
~4466272130E-04
-1481732899E-04
~-1.62919032E-04
-1.78655538E-04
-2¢12701022E-04
-2¢55149157E-04
-3.00605261E-04
-3445307488E~-04
-3485097195E-04
-2.03980882E~04
-184615011E-04
-1e89526677E~-04
-2410601846E-04
=2¢40740346E~-04
-2475237370E~04
~3e11984297E-04
-3e458131486E-04
—-2404071437E-04

135

THETA
3627890661E+01
1.24394338BE+01
6e46671443E+00
4488383078E+00
4450047363E+00
4el2437812E+00
4461746458E+00
551301935E+00
3¢43226621E+01
2¢95210422E+01
2¢36095995E+01
191816662E+01
1.65125523E+01
1¢47756391E+01
1.32064206E+01
1.02829513E+01
36¢31217976E+01
3.48605624E+01
3¢42240951E+01
3.18353527E+01
2¢88456704E+01
2¢60740063E+01
2¢3673857TE+01
2¢28190891E+01
3621258999E+01



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80

2454505819E=04
2412207341E-04
1489735497E«04
1.78014281E-04
1.72940078E-04
1.70685393E-04
1e73737519E-04
3¢34070094E-04
2.71745632E-04
2452479038E~04
2440512687E-04
2¢30648910E-04
2¢23066492E-04
2.18761149E-04
2.19926221E-04
3.01617536E-04
2.71849169E-04
2.78389341E-04
2.77847989E-04
2¢72556181E-04
2465785071E~04
2459122401E-04
2452494362E~04
1471328343E-04
2+51373718E-04
2.84235765E-04
2496219568E-04
2+97600377E-04
2494688374E-04
2.91177788E-04
2¢85495596E-04
B478683779E-05
2.08402410E-04
2.67636829E-04
2.93281749E-04
3403110792E-04
3407080051E-04
3¢10127928E-04
3422383210E-04
7¢45309663E-05
1469006002E-04
2437381379E-04
272367189E-04
2.90345306E-04
3403387151E-04
3¢16174061E~-04
3.18676022E-04
Be76214862E~-05
143548420E-04
2.04803130E-04
2¢39612206E~04
2.64880252E-04
2492292928E-04
3e23439409E-04
3e66824413E-04

-1493071791E~-04
-206846905E-04
-2427811595E-04
-249714078E-04
~2471692444E~-04
~2493181680E-04
-3.03959761E-04
~1e79942262E-04
-1.88123966E~-04
-2023143532E-04
~248428804E-04
~2465320124E-04
~2.77900638E-04
—-288795948E-04
~3e09776739E-04
-1627741652E-04
-1.91978681E~04
~-2+40469758E-04
—2+65504346E-04
-276443043E-04
-2.80359808E-04
-2.81779763E-04
~2478639005E-04
-9.50428013E~05
-2.01436164E~-04
-2452365620E-04
-2e72059735E-04
-2475731472E-04
—-2.72198981E-04
~2466004224E-04
~2459366978E-04
-1.07030038E-04
-2405994298E-04
-250487898E~04
~2462238370E~04
=258177291E~04
-2¢48653895E-04
-2439567961E-04
-2¢34901048E-04
—~1e70999762E-04
-2410848492E-04
~235612637E-04
-2434405227E-04
~221712682E~04
~2408519634E~04
~1497224576E~04
~1.88312520E~04
~2445092838E~04
~2419339832E~-04
-2e¢11920724E~04
~1489202068E~04
-1.68004810E~-04
-157758319E~04
~1457493580E~-04
~1e¢56326654E~-04

136

3470126636E+01
3496682225E+01
3+94002591E+01
374986825E+01
3¢50392812E+01
3¢25999118E+01
2¢91445469E+01
3.03287625E+01
3¢92461281E+01
4e33264259E+01
443846613TE+01
4428111334E+01
4411663059E+01
3¢93037899E+01
3.78657383E+01
2¢74109957E+01
4e023749174E+01
4¢59757901E+01
4465892292E+01
4¢61468418E+01
4053275295E+01
4e44T739545E+01
4438334035E+01
3¢38478093E+01
4454030906E+01
4.78436443E+401
4484112782E+01
4484935041E+01
4484957T740E+01
4485162192E+01
4+85062998E+01
5¢32904308E+01
4497074108E+01
449T7669652E+01
5.00680076E+01
5¢06551744E+01
5015460696E+01
5026983700E+01
537749218E+01
7¢10589570E+01
559852695E+01
5026551129E+01
5022986659E+01
5034498353E+01
5¢54109846E+01
575832789E+01
6.06252386E+01
7¢99557324E+01
6438161888E+01
570191875E+01
5¢59463934E+01
581888234E+01
6414752300E+4+01
645495088E+01
6¢57846881E+01



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

1.04673090E-04
1.35687168E~04
1.77996032E-04
2402368955E~-04
2¢41464959E-04
2¢89351976E-04
3436380519E~04
36477183372E-04
9+496701665E-05
1414410874E-04
1.65093730E~04
2401532927E~04
24¢61289235E-04
3e¢22760117E-04
34B6624451E-04
4452134229E~-04

~3e04313101E-04
—2¢35720316E-04
~1483268917E-04
-1426478704E-04
-1.07073881E-04
~1411072514E-04
-1¢17878154E~04
—137049961E-04
~3e32524875E-04
-2¢57168741E~-04
~1442658487E-04
-676951539E-05
-8+04806601E-05
—-9.78284787E-05
~1416319984E-04
-142725432BE-04

TABLE FOR THE STATE OF STRESS AT EACH CELL

CELL NUMBER

MAXe STRESS
1e44541367E+03
5475268354E+402
1467242569E+02
5431678858E+01
2409261580E+01
3¢47210202E400

~1e49204317E+01
~3e64275815E+02
5¢74032750E+03
2.83824642E+03
1e41717323E+03
TeT159379TE+02
5423853507E+02
4430390184E+02
3e14641406E+02
6+05803968E+02
Te97843145E+03
5607761396E+03
3¢30337983E+03
2029697462E+03
1¢76999717TE+03
1451174320E+03
1.44423584E+03
1.138B4977E+03
Be92243416E+03
6e48080050E+03
4e¢95010777E+03
4400193469E+03
3¢39890301E+4+03
3001425311E+03
2¢72739195E+03
2¢72141509E+03
923365106E+03
T7e09808049E+03

MINe STRESS
~3422021071E+403
-4469404773E+03
~6+29069677E+03
~7e¢71126670E+03
-913000819E+03
-1.06444188E+04
-1422838273E+04
-=1440974466E+04
-3472988871E+03
~4403609704E+403
~4493451418E+03
-6414955252E+03
-T7¢49731865E+03
-8488904077E+03
-~1402648322E+04
-1413711747E+04
-3472589703E+03
-4001516615E+03
~4469478635E+03
-5e62896299E+403
~6469121123E+03
-780359814E+03
-8492625817E+03
~1404022896E+04
-3e444541288E+03
—3484791359E+03
-~4472037483E+403
-5463376745E+03
~-6447175143E403
~T7e24649739E+03
~7e97723281E403
-8430236831E+03
-2462817254E+03
-3451429485E+03
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Be616988B07E+01
7.24880072E+01
6430911477E+01
631325683E+01
6e78372997E+01
T¢16124022E+01
Te44431425E+01
T782420731E+01
~B8e78967385E+01
8¢04413195E+01
7e¢34758505E+401
Be1l6827367E+01
8436631425E+01
8e42391331E+01
Be43515960E+01
8436654513E+01

THETA
3.27890661E+01
1.24394338E+01
6¢46671443E+00
4.88383078E+00
4450047363E+00
4442437812E+00
4461746458E+00
5.51301935E+00
3443226621E+01
2.95210422E+01
2.36095995E+01
1o91816662E+01
1465125523E+01
1447756391E+01
1.32064206E+01
1.02829513E+01
3.31217976E+01
3.48605624E+01
3042240951E+01
3.18353527E+01
2.88456704E+01
2.60740063E+01
2.36738577E+01
2.28190891E+01
3.21258999E+01
3.70126636E+01
3.96682225E+01
3494002591E+01
3,74986825E+01
3.50392812E+01
3425999118E+01
2091445469E+01
3.03287625E+01
3.92461281E+01




35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

6¢11657072E+03
5¢47200151E+03
4497976502E+03
4e60537256E403
4435568236E+03
4.18658900E+403
B«68005628E+03
T7¢06337028E+03
6¢79939825E+03
6e53395664E403
6¢25131655E+03
5498935588E+03
5¢75566392E+03
556821958E+403
4470820339E+03
6¢29481986E+03
6+87448611E+03
Te07477959E+03
7.08398690E+03
7402292351E+03
6+496B45673E+4+03
68467T7480E+03
1.83822087E+03
4483310286E+03
6¢34583932E+403
Te07506278E+403
Te43926171E+403
T¢66430382E+4+03
Te¢85464416E+403
8¢30482074E+03
7¢65858388E+02
3e448631169E+403
5e¢49552486E+03
6+466084465E+03
7¢37906049E+03
7e¢93949212E+03
8447274798E+403
8e¢64337141E+03
4e64625327E+02
2¢56307047TE+03
4465583228E+03
6e02807427E+403
T7e07072998E+03
8e07578348E+03
9410520886E+03
1405470247E+04
4e¢41071199E402
20¢14190351E+03
4e05545133E+03
5642061574E+03
6¢90141081E+03
Be44055676E+03
9¢92363976E+03
1410791775E+04
~287789285E+00

-4485933475E+03
-5481126365E+03
~6e4656T7422E+03
~6e95540737E403
~7e¢35717373E+03
-803732547E+03
~1422823268E+03
-3e64034935E+403
~-5e17427327E+03
-6400494340E+03
-6e41789632E+03
-6e61398749E+03
-6e72669372E+03
—6+68870429E+03
~1443882302E+03
-4415463897E+03
-5.50862276E+03
-6003935816E+03
-6e14674809E+03
-6+405909236E+03
~-5488958971E+03
-5472697691E+403
~2e65943488E4+03
-4472989809E+03
~5461088515E+03
~5474463227E+03
-5451354021E+03
-5016032571E+4+03
-4483064558E+03
~4455558522E+03
~4490023534E+03
~5e27956125E+03
-5441972164E+03
-5403390340E+03
~4443766231E+03
-3e48737413BE+03
~3437491287E+403
-3405636418E+03
-7e21339753E+03
~5681127381E+03
-4 496087205E+03
~3486763975E+03
~2¢91892529E+03
~2431001454E+03
~1e99324474E+03
~1e¢52569220E+03
~8499707166E+03
-6e42903844E+03
~4e28143210E+03
-2e16817639E+03
-1+14179318E+03
~8e00008396E+02
~5e59252689E+02
~7e87745591E+02
-9e97660963E+03
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4433264259E+01
4¢38466137E+01
4428111334E+01
4011663059E+01
3¢93037899E+01
3478657383E+01
2¢74109957E+01
4423749174E+01
4459757901E+01
4.65892292E+01
4461468418E+01
4.53275295E+01
4444739545E401
4438334035E+01
3¢38478093E+01
4¢54030906E+01
4,78436443E+01
4.84112782E+01
4484935041E+01
4L484957740E+01
4485162192E+01
4485062998E+01
5¢32904308E+01
497074108E+01
4497669652E+01
5400680076E+01
5606551744E+01
5015460696E+01
5426983700E+01
537749218E+01
7+10589570E+01
5¢59852695E+01
526551129E+01
5¢22986659E+01
5e¢34498353E+01
5¢54109846E+01
575832789E+01
6606252386E+01
T7¢99557324E+01
6¢38161888E+01
570191875E+01
5¢59463934E+01
581888234E+01
6e14752300E+01
6+45495088E+01
6457846881E+01
8461698807E+01
7424880072E+01
6e¢30911477E+01
6431325683E+01
6e78372997E+01
7¢16124022E+01
Tel4431425E+01
T¢82420731E+401
~B«78967385E+01



90
91
92
93
94
95
96

TABLE FOR STRAINS IN THE X-Y DIRECTIONS FOR EACH CELL

CELL NUMBER

1422835993E+403
4403174232E+03
5¢97443014E+03
7481796824E+03
9.67290902E+03
1.15954436E+04
1e36469647E+04

STRAINX
2410892863E~05
555211645E~05
6¢49320068E-05
Teb64462443E~-05
Be95560720E~-05
1403814045E-04
1¢18895447E~04
1623339238E~-04
9.81723156E-05
6¢26431670E~05
5424351549E-05
548379717E-05
6¢43557078BE-05
7e69697808E~05
Be92083699E=05
1¢17366877E-04
1451772905E-04
B8e06769690E~05
4474250123E-05
3¢72935228E-05
4405700303E-05
5604441773E-05
6¢49506010E-05
66763878B7E-05
1.80309304E-04
9¢23064704E-05
4414514420E~05
215110931E-05
1.95117250E-05
2e63739344E-05
3¢60375097E~05
6e04357479E~05
2e03004347TE-04
8476829108E~05
2¢85524916E-05
5¢88186504E~06
1659343199E-06
6e00297335E~-06
le51108825E~05
20403517920E~-05
2410618857E~04
6¢11564096E-05
1¢01249407E-05

-7 34655427E+03
-3407023191E+03
~2438525576E+02
-6+.90293300E+01
-3429816540E+01
-1409664466E+01
2¢76459572E+02

STRAINY
-625012171E-05
~151626017E-04
-2.07812605E~04
-2455135217E~04
-3.02101319E~04
~3452102802E~04
~4405866228E~04
-4 46077942BE~04
-5412620770E~05
-9.05930149E~05
-1.34506444E~-04
-1480323675E~-04
-2427069894E~04
-2.74338294E-04
-3621379489E~-04
-3.68558860E~-04
~5425471020E-05
-5458865200E-05
~7e¢98911645E-05
~-115039918BE-04
~-1455398358E-04
-1697254126E-04
—~2e¢39531122E-04
~2.82910809E-04
-5025121403E-05
-3.08724425E-05
~3460910068E-05
-5495871909E-05
-9412115214E-05
~125126301E~-04
-1.58533796E-04
=1490657990E-04

~4488765143E-05

~4406124576E-06

783014457E-07
~1¢37979818E~05
~3e62646466E-05
-6408371190E-05
-~8451456811E-05
-1.10202310E-04
-3467429729E-05

1.87140786E~-05

2477946422E-05

139

8¢04413195E+01
Te34758505E+01
Be16827367E+01
Be36631425E+01
8442391331E+01
8¢43515960E+01
Be36654513E+401

STRANXY
1.84087452E-04
G.60616715E~05
6426343558E-05
570813497E-05
6620390745E-05
7¢09769729E~-05
85321179BE-05
1413816680E-04
3.82201325E-04
2¢55452661E~-04
2002014305E-04
1¢86141911E-04
1.89435592E-04
199175811E-04
2003932293E-04
1.82317515E-04
4¢64211766E-04
3669597816E-04
3422355827E-04
3.07826960E=04
3.09887636E-04
3418733140E-04
3430515539E-04
3¢57552328E-04
4e82727563E-04
4.30293706E-04
4011817472E-04
4.09595707E-04
44131487T77E~-04
4418026025E~04
4421087483E-04
4406382365E=04
44.48067778E=04
4¢50625185E-04
4eT74B11210E~04
4488545274E=04
4e94522040E~-04
4o96488134E-04
4457556859E=04
5013362301E~-04
3¢50943639E~04
4.61881937E-04
518558142E-04



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

~B8489156718E-06
«]1+29293553E-05
~104093210E-05
-6636281493E-06
-2¢26093016E-06

Be86902794E-05

2417832476E-05
-1406532543E-05
-2e16744174E~05
~2439368178E-05
~2¢32568968E-05
-2e15214659E-05
-~2401961748E-05
~3e73897396E-05
~3e26896934E-05
-3e43344618E-05
~3e33600628E~-05
~3e25740739E~-05
~3437287038E-05
~3e76924927TE-05
~4402793730E-05
~-145130166E-04
~9e19786867E-05
~6e15615272E-05
~4448784986E~-05
~4401104694E-05
~4435488118E-05
~4496869229E-05
~663261030E-05
~2e34972167E~-04
~1+48684180E~04
-B«84346987E~-05
~5e4741127BE~05
~4477245990E~05
~5651272124E-05
~6+86802864E-05
~6e83134003E-05
~3.02488193E-04
-2e02091571E-04
-109273959E-04
~5093152981E-05
-5474738483E-05
~7e12284004E-05
-8452041035E-05
~1415696346E-04
-3e31942737E-04
—-2¢46922381E-04
-1e17763048E-04
~6e20615892E-05
-T7¢63170992E~05
-9¢35908402E-05
-1.11447854E-04
-1.20201135E-04

2412352094E-05
9404249401E-06
—4416541673E~-06
-1e62945471E~05
-2438837129E~-05
-1+24047375E-05
2481543066E-05
4425233992E~05
4458342508E-05
4458057233E-05
4e57462904E~05
4466950298E-05
4.63247922E-05
1.82280794E-05
3.50978046E~-05
514833925E-05
6e44034413E-05
7«75075754E-05
9421548597E-05
1.08252460E-04
1427761535E-04
4486613710E-05
501361968E-05
6¢33302691E~05
8428404611E-05
1.08743093E-04
1,38416329E-04
1.68636409E~-04
1.96689605E~-C4
7.75008153E-05
728927686E-05
8¢13171042E~-05
1.05151267E~04
le44600042E~04
1.89661821E-04
2¢34626116E-04
2.78811160E~-04
1.02848182E-04
1.02058422E~-04
1.04001074E-04
1.35205550E-04
1.91864926E~-04
2¢49507862E-04
3¢03706468E-04
3.55829757E-04
9490880285E£~05
1404164513E~04
1.40198291iE-04
1495899362E-04
2¢57125674E-~-04
3¢18522479E-04
3481752321E-04
4e45081036E-04
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542516486E-04
548559373E~-04
546109186E-04
5¢40810976E-04
5¢30693046E-04
2¢46441442E-04
4e¢52765060E-04
5¢33960007E-04
5064255213E-04
5¢69074149E-04
5¢62672048E-04
5052990329E~-04
540786636E-04
1686794140E~04
4408814734E~04
5010968227E-04
5446849979E-04
5¢50387448BE~-04
5¢41288784E-04
5¢29967584E~-04
5¢31345460E-04
1¢50765309E-04
3¢52268075E-04
4e56207604E~04
4,90414262E-04
4489944895E~-04
4.78473869E-04
4464664485E-04
4433428332E-04
1¢14277980E~-04
2487387438E-04
3+480582575E-04
349788956204
3487815303E-04
3477656530E~04
3¢73231519E-04
3491396958E-04
5¢45172219E-05
2413157925E-04
2091592393E-04
2.65146040E-04
2¢43535414E~04
2439724889E-04
2434732845E-04
2¢05180543E~-04
~3e¢17022581E-05
1¢21693889E~-04
1467831386E=04
T«70707928E-05
7¢49838518E-05
8+40082110E-05
9e85225469E~05
1.27071508E-04




TABLE FOR STRESSES IN THE X-Y DIRECTIONS FOR EACH CELL

CELL NUMBER

STRESSX
7e71072913E+01
3430770096E+02
8453261091E+01

~3410947430E+00
~3454172698E+01
~5498943526E+01
-9444314539E+01
«4491030463E+02
2472946239E+03
1416918448E+03
3498347969E+02
2.44242560E+01
~1424129469E+02
~1475770576E+02
-237543189E+02
2424150088E+02
4448380576E+03
2+10695647E+03
7473329549E+02
9416993659E+01
-1.99433313E+02
~2487870124E+02
~2427760515E+02
~5497011999E+02
5442491192E+03
2.73773860E+03
1.00958703E+03
1+19833051E+402
~2.58848288E+02
~3468042500E+02
“3,79866894E+02
1.06758824E+02
64+20905689E+03
2485047925E+03
9449035032E+02
5e74440844E+01
-3406130613E+02
~4403785569E+02
-3443939180E+02
-4418974751E402
6.58008676E+03
2.20122967E+03
6408681317E+02
~8431100353E+01
-3.36811225E+02
~3.84360860E+02
-3.70917988E+02
-3,10748702E+02
2.80117115E+03
9.96578226E+02
6¢93549031E+01
~2e61235459E+02

STRESSY
~1485190433E+03
=444495494TE+03
~6420878031E+03
~7¢65498934E+03
-9.07366476E+03
-1.05810524E+04
~1422043163E+04
~1439706920E+04
~7419023595E+02
~2.36703510E+03
~3.91568892E+03
~5.40238298E+03
-6484933567E+403
-8428288001E+03
~9471264762E+03
~1¢09895208E+04
~2431271335E+02
~1.04450866E+03
~2416473607E+03
-34423687T4E+03
—4472178074E+03
~6+00398481E+03
~7¢25426182E+03
~8.66642788E+03

5¢21093656E+01
-1404851695E+02
~7479854095E+02
~1475166581E+03
~2.81400013E+03
-3486420177E+03
~4486997396E+03
~5468771204E+03

3.96421636E+02

7¢33306399E+02

3.08200941E+02 -

-3496706232E+02
~1417977858E+4+03
~1.94624924E+03
~2¢65755219E+03
~3e43176172E+03
8e471736839E+02
1.22179126E+03
1.01644366E+03
6¢12123272E+02
1470231455E+02
~2440270758E+02
~6400111812E+02
~8409736002E+02
44.68209217E+02

114360267E+03

1.29650845E+03
129665689E+03

141

STRESXY
2412408598E£+03
1.10840390E+03
7.22704105E402
6+58630958E+02
7158354 74E+02
8418965071E+02
9.84475151E+02
1.31326939E+03
4441001529E+403
2.94753071E+03
2433093429E403
2414779128E403
2418579529E+03
2429818243E+403
2435306492E403
2.10366363E+03
5¢35628961E+03
4426459018E+03
3¢471949031E+03
3455184953E+03
3457562657E+03
3¢67769007E+03
3¢81364083E+03
4412560378E+03
5¢56993342E+03
4e9649273TE+03
4475174006E+03
4472610431E403
4476710127E+03
4482337722E+03
4¢85870172E+03
4e68902729E+03
5.17001283E+0Q3
5¢19952136E+03
5.47859089E+03
5¢63706085E+03
570602354E+03
5.72870924E+03
5¢74104068E+03
5¢92341117E+03
4404934968E+03
5432940697E+03
598336317E+03
6.25980561E+403
6.32953123E+03
6430125984E+03
6e24012665E+03
6.12338131E+03
2.84355510E+03
5e22421223E+03
6.16107701E+03
6451063707TE+03



53
54
55
56
57
58
59
60
61
62
63
b4
65
66
67
68
69
70
71
72
73
74
75
.76
77
78

- 79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

~3436102226E+02
-3614275047E402
~2e47679901E+02
~2¢07650675E+02
-105235107E+403
-7430561056E+02
-6422728B926E+02
-4462825181E+02

~3,07312131E+402

-2400513601E+02
-171980930E+02
-~6¢43157981E+01
~4¢30324467E+03
~2¢53641190E+403
-1¢40315758E+403
~6+60209680E+02
~2446842024E+402
~6467224115E+01
298021864E+01
~2e41293018E+02
~6497984359E403
-4 «18075876E+03
~2¢11119453E403
~7e64694983E+02
~143228126E+02
5¢83956241E+01
5462928022E+01
5405382886E+02
~8¢95495840E+03
~5¢65299046E+03
~2457385615E+03
-6¢18251646E+02
2082295263E+00
1¢19471151E+02
1694763858E+02
~2094969859E+02
~996317568E+03
~7¢11009980E+03
-2+49572179E+03
~1.08520235E+02
2070528433E+01
6+48100057E+01
1.01467325E+02
4¢39225574E+02

1.27334103E+03
1.27810620E+03
1¢32654693E+03
1¢32744856E+03
2.31137060E+02
8433765824E402
1¢35768310E+03
1.79325569E+03
2423303362E+403
2.70449171E+03
3.419597951E+03
3.81355132E+03
1.68867727E+02
7+43162335E402
1447896080E+03
2.28715093E+03
3.18824020E+03
4413247315E+03
5.06803292E+03
5.82830025E+03
2.31071384E+02
9.32555428E+402
1.8061547TE+03
2.92512950E+403
4429503282E+403
5.70737332E+03
7.05567132E+03
Be51594966E+03
3498957938E+02
1436585554E+03
2.3478753BE403
3.,87069099E+03
547567946 TE+03
7.52107721E+03
9.16962321E+03
1.05864018E+04
~1.63118478E+01
9491905463E+02
3.45723221E+403
5.84442480E403
7.72188607E+03
9.57511736E+03
1¢14830098E+04
1.34841987E+04

142

6¢56624019E+03
6e49236978E+03
6+38065765E+03
6+23984580E+073
2.15531700E+03
4.71709308E+403
5.89578723E+03
6¢30980745E403
6¢35062440E+03
6¢24563981E+03
6¢11501059E+03
6+13090916E+03
1.73959972E+03
4.06463163E+03
5426393389E+03
5.65862610E+03
5.65321033E+03
5452085234E+03
5¢36151329E+03
5¢00109614E+03
1¢31859208E+03
3.31600890E+03-
4439133740E+03
4e59103341E+403
4447479196E+03
4435757534E4+03
4430651752E+03
4.51611875E+03
6429044868BE+02
2445951452E+03
3436452761E+03
3.05937738E+03
2.81002401E+03
2.76605640E+03
2.70845591E+03
2436746780E+03
3.65795286E+02
1440416025E+03

. 1493651599E+03

Be«89278378E+02
8.65198291E+02
9.69325512E+02
1.13679862E+403
le 46620971E403
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